521 research outputs found

    Required but disguised: Environmental signals in limestone-marl alternations

    Get PDF
    The nature of rhythmic carbonate-rich successions such as limestone^marl alternations has been, and still is, subject to controversy. The possibility of an entirely diagenetic origin for the rhythmic calcareous alternations is discarded by most authors. One problem with an entirely diagenetic, self-organized development of limestone^marl alternations is the fact that limestone and marl beds in many examples are laterally continuous over hundreds of meters or even kilometers. In an entirely self-organized system, lateral coupling would be very limited; thus one would expect that, rather than laterally continuous beds, randomly distributed elongate nodules would form. We address the origin of limestone^marl alternations using a computer model that simulates differential diagenesis of rhythmic calcareous successions. The setup uses a cellular automaton model to test whether laterally extensive, rhythmic calcareous alternations could develop from homogeneous sediments in a process of self-organization. Our model is a strong simplification of early diagenesis in fine-grained, partly calcareous sediments. It includes the relevant key mechanisms to the question whether an external trigger is required in order to obtain laterally extensive limestone^ marl alternations. Our model shows that diagenetic self-organization alone is not sufficient to produce laterally extensive, correlatable beds. Although an external control on bedding formation could be considered to have solved the problem as commonly assumed, we here suggest an interesting third possibility: the rhythmic alternations were formed through the interaction of both an external trigger and diagenetic self-organization. In particular we observe that a very limited external trigger, either in time or amplitude, readily forms correlatable beds in our otherwise diagenetic model. Remarkably, the resulting rhythmites often do not mirror the external trigger in a one-to-one fashion and may differ in phase, frequency and number of couplets. Therefore, the interpretation of calcareous rhythmites as a one-to-one archive of climate fluctuations may be misleading. Parameters independent of diagenetic alteration should be considered for unequivocal interpretation

    A new species of Conchicolites (Cornulitida, Tentaculita) from the Wenlock of Gotland, Sweden

    Get PDF
    A new cornulitid species, Conchicolites crispisulcans sp. nov., is described from the Wenlock of Gotland, Sweden. The undulating edge of C. crispisulcans sp. nov. peristomes is unique among the species of Conchicolites. This undulating peristome edge may reflect the position of setae at the tube aperture. The presence of the undulating peristome edge supports the hypothesis that cornulitids had setae and were probably related to brachiopods

    Neodymium isotopes of central Mediterranean phosphatic hardgrounds reveal Miocene paleoceanography

    Get PDF
    Understanding the causes of the formation of hardgrounds provides insights on the oceanographic evolution of a basin. Phosphate-rich hardground formation interrupted carbonate ramp deposition in the Mediterranean during the Miocene. We analyzed the epsilon(Nd) record of three central Mediterranean hardgrounds to identify the origin of the phosphate-rich waters that formed them within the frame of Mediterranean Miocene paleoceanographic evolution. The Nd isotopes suggest that eastern Mediterranean deep waters were controlled by runoff, in contrast to Atlantic and Indian Ocean waters. This Nd isotope record attests to the weakening of Mediterranean circulation during the Miocene due to closure of the Indian Gateway. Limited exchange with Atlantic shallow seawater led to long residence times for deep waters in the basin. This record indicates the role of upwelling in formation of phosphate hardgrounds and shows the influence of global climate change and local paleoceanographic conditions

    Algae, calcitarchs and the Late Ordovician Baltic limestone facies of the Baltic Basin

    Get PDF
    The Late Ordovician succession of the Baltic Basin contains a characteristic fine-grained limestone, which is rich in calcareous green algae. This limestone occurs in surface outcrops and drill-cores in an extensive belt reaching from Sweden across the Baltic Sea to the Baltic countries. This limestone, which is known in the literature under several different lithological names, is described and interpreted, and the term "Baltic limestone facies" is suggested. The microfacies, from selected outcrops from the angstrom land Islands, Finland and Estonia, consists of calcareous green algae as the main skeletal component in a bioclastic mudstone-packstone lithology with a pure micritic matrix. Three types of calcitarch, which range in diameter from c. 100-180 mu m, are common. Basinward, the youngest sections of the facies belt contain coral-stromatoporoid patch reefs and Palaeoporella-algal mounds. The Baltic limestone facies can be interpreted as representing the shallow part of an open-marine low-latitude carbonate platform.Peer reviewe

    Reconstructing depositional rates and their effect on paleoenvironmental proxies : the case of the Lau Carbon Isotope Excursion in Gotland, Sweden

    Get PDF
    Variations in depositional rates affect the temporal depositional resolutions of proxies used for paleoenvironmental reconstructions; for example, condensation can make reconstructed environmental changes appear very abrupt. This is commonly addressed by transforming proxy data using age models, but this approach is limited to situations where numerical ages are available or can be reliably inferred by correlation. Here we propose a new solution, in which relative age models are constructed based on proxies for depositional rates. As a case study, we use the onset of the late Silurian Lau Carbon Isotope Excursion (LCIE) in Gotland, Sweden. The studied succession is a gradual record of shallowing upward in a tropical, neritic carbonate platform. As proxies for depositional rates we tested thorium concentration, carbonate content, and the concentration of pelagic palynomorphs. These three proxies were used to create relative age models using the previously published DAIME model. We applied these models to transform the delta C-13(carb) values as well as concentrations of selected redox-sensitive elements. The three relative age models yielded qualitatively similar results. In our case study, variations in depositional rates resulted in peaks of redox proxies appearing up to 76% higher when taken at face value, compared to when accounting for these rates. In the most extreme cases, our corrections resulted in a reversal in the stratigraphic trend of elemental concentrations. This approach can be applied and developed across depositional setting and types of paleoenvironmental proxies. It provides a flexible tool for developing quantitative models to improve our understanding of the stratigraphic record

    CHEMICAL ENGINEERING DIVISION SUMMARY REPORT

    Get PDF
    Work reported includes: Chemical-Metallurgical Processing; Fuel Cycle Applications of Volatility and Fluidization Techniques; Calorimetry; Reactor Safety; Energy Conversion; and Determination of Nuclear Constants

    Metal-induced malformations in early Palaeozoic plankton are harbingers of mass extinction

    Get PDF
    Glacial episodes have been linked to Ordovician–Silurian extinction events, but cooling itself may not be solely responsible for these extinctions. Teratological (malformed) assemblages of fossil plankton that correlate precisely with the extinction events can help identify alternate drivers of extinction. Here we show that metal poisoning may have caused these aberrant morphologies during a late Silurian (Pridoli) event. Malformations coincide with a dramatic increase of metals (Fe, Mo, Pb, Mn and As) in the fossils and their host rocks. Metallic toxins are known to cause a teratological response in modern organisms, which is now routinely used as a proxy to assess oceanic metal contamination. Similarly, our study identifies metal-induced teratology as a deep-time, palaeobiological monitor of palaeo-ocean chemistry. The redox-sensitive character of enriched metals supports emerging ‘oceanic anoxic event’ models. Our data suggest that spreading anoxia and redox cycling of harmful metals was a contributing kill mechanism during these devastating Ordovician–Silurian palaeobiological events
    • 

    corecore