344 research outputs found

    Feeding and Manual Brushing Influence the Release of Oxytocin, ACTH and Cortisol Differently During Milking in Dairy Cows

    Get PDF
    AimThis study aimed to examine the effects of feeding or abdominal brushing on the release of the hormones oxytocin, ACTH and cortisol during milking in dairy cows. MethodsTwelve cows in early lactation were used (2 x 2 factorial experimental design), testing the effects of two types of sensory stimulation during milking over a 3 day period; feeding concentrate or manual abdominal brushing (1 stroke/s). Blood samples for hormone analyses were collected at time at -15, -1, 0 (onset of cluster), every min for 8 min, at 10, 12, 14, 16, 30, and 60 min. Hormone levels were assayed and AUC was calculated. ResultsMilking was associated with an immediate and significant rise of oxytocin. When milking was combined with feeding, significantly higher levels of oxytocin were observed at 2 and 4 mins (p < 0.05). No effect of brushing on oxytocin levels was observed. Milking alone was associated with a significant rise of ACTH levels. Feeding in connection with milking reduced the immediate rise of ACTH levels (p < 0.05) and AUC (p < 0.02), whereas no effects of brushing were found. Milking caused a progressive rise of cortisol levels. Concomitant feeding did not influence cortisol levels, whereas brushing significantly decreased cortisol levels at 1, 5 and 14 mins after onset of milking (p < 0.05). ConclusionFeeding increases oxytocin release in response to milking and decreases ACTH levels. Abdominal brushing did not influence these variables, but decreased cortisol levels. These data demonstrate that activation of afferent vagal nerve fibres and of cutaneous sensory nerves originating from the abdominal skin in front of the udder influence milking related hormone release differently

    Feeding and Manual Brushing Influence the Release of Oxytocin, ACTH and Cortisol Differently During Milking in Dairy Cows.

    Get PDF
    Aim This study aimed to examine the effects of feeding or abdominal brushing on the release of the hormones oxytocin, ACTH and cortisol during milking in dairy cows. Methods Twelve cows in early lactation were used (2 × 2 factorial experimental design), testing the effects of two types of sensory stimulation during milking over a 3 day period; feeding concentrate or manual abdominal brushing (1 stroke/s). Blood samples for hormone analyses were collected at time at -15, -1, 0 (onset of cluster), every min for 8 min, at 10, 12, 14, 16, 30, and 60 min. Hormone levels were assayed and AUC was calculated. Results Milking was associated with an immediate and significant rise of oxytocin. When milking was combined with feeding, significantly higher levels of oxytocin were observed at 2 and 4 mins (p < 0.05). No effect of brushing on oxytocin levels was observed. Milking alone was associated with a significant rise of ACTH levels. Feeding in connection with milking reduced the immediate rise of ACTH levels (p < 0.05) and AUC (p < 0.02), whereas no effects of brushing were found. Milking caused a progressive rise of cortisol levels. Concomitant feeding did not influence cortisol levels, whereas brushing significantly decreased cortisol levels at 1, 5 and 14 mins after onset of milking (p < 0.05). Conclusion Feeding increases oxytocin release in response to milking and decreases ACTH levels. Abdominal brushing did not influence these variables, but decreased cortisol levels. These data demonstrate that activation of afferent vagal nerve fibres and of cutaneous sensory nerves originating from the abdominal skin in front of the udder influence milking related hormone release differently

    What do the patients with medication overuse headache expect from treatment and what are the preferred sources of information?

    Get PDF
    This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited

    Applying consumer responsibility principle in evaluating environmental load of carbon emissions

    Get PDF
    There is a need for a proper indicator in order to assess the environmental impact of international trade, therefore using the carbon footprint as an indicator can be relevant and useful. The aim of this study is to show from a methodological perspective how the carbon footprint, combined with input- output models can be used for analysing the impacts of international trade on the sustainable use of national resources in a country. The use of the input-output approach has the essential advantage of being able to track the transformation of goods through the economy. The study examines the environmental impact of consumption related to international trade, using the consumer responsibility principle. In this study the use of the carbon footprint and input-output methodology is shown on the example of the Hungarian consumption and the impact of international trade. Moving from a production- based approach in climate policy to a consumption-perspective principle and allocation, would also help to increase the efficiency of emission reduction targets and the evaluation of the ecological impacts of international trade

    A Mathematical Model for the Dynamics and Synchronization of Cows

    Full text link
    We formulate a mathematical model for daily activities of a cow (eating, lying down, and standing) in terms of a piecewise affine dynamical system. We analyze the properties of this bovine dynamical system representing the single animal and develop an exact integrative form as a discrete-time mapping. We then couple multiple cow "oscillators" together to study synchrony and cooperation in cattle herds. We comment on the relevant biology and discuss extensions of our model. With this abstract approach, we not only investigate equations with interesting dynamics but also develop interesting biological predictions. In particular, our model illustrates that it is possible for cows to synchronize \emph{less} when the coupling is increased.Comment: to appear in Physica

    Do 2H and 18O in leaf water reflect environmental drivers differently?

    Get PDF
    We compiled hydrogen and oxygen stable isotope compositions (δ H and δ O) of leaf water from multiple biomes to examine variations with environmental drivers. Leaf water δ H was more closely correlated with δ H of xylem water or atmospheric vapour, whereas leaf water δ O was more closely correlated with air relative humidity. This resulted from the larger proportional range for δ H of meteoric waters relative to the extent of leaf water evaporative enrichment compared with δ O. We next expressed leaf water as isotopic enrichment above xylem water (Δ H and Δ O) to remove the impact of xylem water isotopic variation. For Δ H, leaf water still correlated with atmospheric vapour, whereas Δ O showed no such correlation. This was explained by covariance between air relative humidity and the Δ O of atmospheric vapour. This is consistent with a previously observed diurnal correlation between air relative humidity and the deuterium excess of atmospheric vapour across a range of ecosystems. We conclude that H and O in leaf water do indeed reflect the balance of environmental drivers differently; our results have implications for understanding isotopic effects associated with water cycling in terrestrial ecosystems and for inferring environmental change from isotopic biomarkers that act as proxies for leaf water

    Early Last Interglacial ocean warming drove substantial ice mass loss from Antarctica

    Get PDF
    The future response of the Antarctic ice sheet to rising temperatures remains highly uncertain. A useful period for assessing the sensitivity of Antarctica to warming is the Last Interglacial (LIG) (129 to 116 ky), which experienced warmer polar temperatures and higher global mean sea level (GMSL) (+6 to 9 m) relative to present day. LIG sea level cannot be fully explained by Greenland Ice Sheet melt (∼2 m), ocean thermal expansion, and melting mountain glaciers (∼1 m), suggesting substantial Antarctic mass loss was initiated by warming of Southern Ocean waters, resulting from a weakening Atlantic meridional overturning circulation in response to North Atlantic surface freshening. Here, we report a blue-ice record of ice sheet and environmental change from the Weddell Sea Embayment at the periphery of the marine-based West Antarctic Ice Sheet (WAIS), which is underlain by major methane hydrate reserves. Constrained by a widespread volcanic horizon and supported by ancient microbial DNA analyses, we provide evidence for substantial mass loss across the Weddell Sea embayment during the LIG, most likely driven by ocean warming and associated with destabilization of subglacial hydrates. Ice sheet modeling supports this interpretation and suggests that millennial-scale warming of the Southern Ocean could have triggered a multimeter rise in global sea levels. Our data indicate that Antarctica is highly vulnerable to projected increases in ocean temperatures and may drive ice–climate feedbacks that further amplify warming
    corecore