629 research outputs found

    A Smooth Distributed Feedback for Global Rendezvous of Unicycles

    Full text link
    This paper presents a solution to the rendezvous control problem for a network of kinematic unicycles in the plane, each equipped with an onboard camera measuring its relative displacement with respect to its neighbors in body frame coordinates. A smooth, time-independent control law is presented that drives the unicycles to a common position from arbitrary initial conditions, under the assumption that the sensing digraph contains a reverse-directed spanning tree. The proposed feedback is very simple, and relies only on the onboard measurements. No global positioning system is required, nor any information about the unicycles' orientations

    Rearranging trees for robust consensus

    Full text link
    In this paper, we use the H2 norm associated with a communication graph to characterize the robustness of consensus to noise. In particular, we restrict our attention to trees and by systematic attention to the effect of local changes in topology, we derive a partial ordering for undirected trees according to the H2 norm. Our approach for undirected trees provides a constructive method for deriving an ordering for directed trees. Further, our approach suggests a decentralized manner in which trees can be rearranged in order to improve their robustness.Comment: Submitted to CDC 201

    Collective optimization over average quantities

    Full text link
    peer reviewedThis paper addresses the design of algorithms for the collective optimization of a cost function defined over average quantities in the presence of limited communication. We argue that several meaningful collective optimization problems can be formulated in this way. As an application of the proposed approach, we propose a novel algorithm that achieves synchronization or balancing in phase models of coupled oscillators under mild connectedness assumptions on the (possibly time-varying and unidirectional) communication graphs

    Starling flock networks manage uncertainty in consensus at low cost

    Get PDF
    Flocks of starlings exhibit a remarkable ability to maintain cohesion as a group in highly uncertain environments and with limited, noisy information. Recent work demonstrated that individual starlings within large flocks respond to a fixed number of nearest neighbors, but until now it was not understood why this number is seven. We analyze robustness to uncertainty of consensus in empirical data from multiple starling flocks and show that the flock interaction networks with six or seven neighbors optimize the trade-off between group cohesion and individual effort. We can distinguish these numbers of neighbors from fewer or greater numbers using our systems-theoretic approach to measuring robustness of interaction networks as a function of the network structure, i.e., who is sensing whom. The metric quantifies the disagreement within the network due to disturbances and noise during consensus behavior and can be evaluated over a parameterized family of hypothesized sensing strategies (here the parameter is number of neighbors). We use this approach to further show that for the range of flocks studied the optimal number of neighbors does not depend on the number of birds within a flock; rather, it depends on the shape, notably the thickness, of the flock. The results suggest that robustness to uncertainty may have been a factor in the evolution of flocking for starlings. More generally, our results elucidate the role of the interaction network on uncertainty management in collective behavior, and motivate the application of our approach to other biological networks.Comment: 19 pages, 3 figures, 9 supporting figure
    • …
    corecore