1,478 research outputs found

    Optical bistability involving planar metamaterial with broken structural symmetry

    Full text link
    We report on a bistable light transmission through a planar metamaterial composed of a metal pattern of weakly asymmetric elements placed on a nonlinear substrate. Such structure bears the Fano-like sharp resonance response of a trapped-mode excitation. The feedback required for bistability is provided by the coupling between the strong antiphased trapped-mode-resonance currents excited on the metal elements and the intensity of inner field in the nonlinear substrate.Comment: 4 pages, 4 figure

    Perturbation Theory for Path Integrals of Stiff Polymers

    Full text link
    The wormlike chain model of stiff polymers is a nonlinear σ\sigma-model in one spacetime dimension in which the ends are fluctuating freely. This causes important differences with respect to the presently available theory which exists only for periodic and Dirichlet boundary conditions. We modify this theory appropriately and show how to perform a systematic large-stiffness expansions for all physically interesting quantities in powers of L/ΟL/\xi, where LL is the length and Ο\xi the persistence length of the polymer. This requires special procedures for regularizing highly divergent Feynman integrals which we have developed in previous work. We show that by adding to the unperturbed action a correction term Acorr{\cal A}^{\rm corr}, we can calculate all Feynman diagrams with Green functions satisfying Neumann boundary conditions. Our expansions yield, order by order, properly normalized end-to-end distribution function in arbitrary dimensions dd, its even and odd moments, and the two-point correlation function

    Probing Solar Convection

    Get PDF
    In the solar convection zone acoustic waves are scattered by turbulent sound speed fluctuations. In this paper the scattering of waves by convective cells is treated using Rytov's technique. Particular care is taken to include diffraction effects which are important especially for high-degree modes that are confined to the surface layers of the Sun. The scattering leads to damping of the waves and causes a phase shift. Damping manifests itself in the width of the spectral peak of p-mode eigenfrequencies. The contribution of scattering to the line widths is estimated and the sensitivity of the results on the assumed spectrum of the turbulence is studied. Finally the theoretical predictions are compared with recently measured line widths of high-degree modes.Comment: 26 pages, 7 figures, accepted by MNRA

    Clinical decision making and outcome in the routine care of people with severe mental illness across Europe (CEDAR)

    Get PDF
    Aims. There is a lack of knowledge on clinical decision making and its relation to outcome in the routine treatment of people with severe mental illness. This study examined preferred and experienced clinical decision making from the perspectives of patients and staff, and how these affect treatment outcome. Methods. CEDAR (ISRCTN75841675) is a naturalistic prospective observational study with bimonthly assessments during a 12-month observation period. 588 adults with severe mental illness were consecutively recruited from caseloads of community mental health services at the six study sites (Germany, UK, Italy, Hungary, Denmark, and Switzerland). Clinical decision making was measured using two instruments (Clinical Decision Making Style Scale. CDMS;Clinical Decision Making Involvement and Satisfaction Scale, CDIS) from patient and staff perspectives. Outcomes assessed were unmet needs (Camberwell Assessment of Need Short Appraisal Schedule, CANSAS). Mixed-effects multinomial regression was used to examine differences in involvement in and satisfaction with actual decision making. The effect of clinical decision making on outcome was examined using hierarchical linear modelling controlling for covariates. Results. Shared decision making was preferred by patients (2=135.08; p<0.001) and staff (2=368.17; p<0.001). Decision making style of staff significantly affected unmet needs over time, with unmet needs decreasing more in patients whose clinicians preferred active to passive (-0.406 unmet needs per two months, p=0.007) or shared (-0.303 unmet needs per two months, p=0.015) decision making. Conclusions. A shift from shared to active involvement of patients is indicated, including the development and rigorous test of targeted interventions

    Statistical mechanics of Fofonoff flows in an oceanic basin

    Get PDF
    We study the minimization of potential enstrophy at fixed circulation and energy in an oceanic basin with arbitrary topography. For illustration, we consider a rectangular basin and a linear topography h=by which represents either a real bottom topography or the beta-effect appropriate to oceanic situations. Our minimum enstrophy principle is motivated by different arguments of statistical mechanics reviewed in the article. It leads to steady states of the quasigeostrophic (QG) equations characterized by a linear relationship between potential vorticity q and stream function psi. For low values of the energy, we recover Fofonoff flows [J. Mar. Res. 13, 254 (1954)] that display a strong westward jet. For large values of the energy, we obtain geometry induced phase transitions between monopoles and dipoles similar to those found by Chavanis and Sommeria [J. Fluid Mech. 314, 267 (1996)] in the absence of topography. In the presence of topography, we recover and confirm the results obtained by Venaille and Bouchet [Phys. Rev. Lett. 102, 104501 (2009)] using a different formalism. In addition, we introduce relaxation equations towards minimum potential enstrophy states and perform numerical simulations to illustrate the phase transitions in a rectangular oceanic basin with linear topography (or beta-effect).Comment: 26 pages, 28 figure

    LOFAR tied-array imaging and spectroscopy of solar S bursts

    Get PDF
    Context. The Sun is an active source of radio emission that is often associated with energetic phenomena ranging from nanoflares to coronal mass ejections (CMEs). At low radio frequencies (&lt;100 MHz), numerous millisecond duration radio bursts have been reported, such as radio spikes or solar S bursts (where S stands for short). To date, these have neither been studied extensively nor imaged because of the instrumental limitations of previous radio telescopes. Aims. Here, LOw Frequency ARray (LOFAR) observations were used to study the spectral and spatial characteristics of a multitude of S bursts, as well as their origin and possible emission mechanisms. Methods. We used 170 simultaneous tied-array beams for spectroscopy and imaging of S bursts. Since S bursts have short timescales and fine frequency structures, high cadence (~50 ms) tied-array images were used instead of standard interferometric imaging, that is currently limited to one image per second. Results. On 9 July 2013, over 3000 S bursts were observed over a time period of ~8 h. S bursts were found to appear as groups of short-lived (&lt;1 s) and narrow-bandwidth (~2.5 MHz) features, the majority drifting at ~3.5 MHz s-1 and a wide range of circular polarisation degrees (2−8 times more polarised than the accompanying Type III bursts). Extrapolation of the photospheric magnetic field using the potential field source surface (PFSS) model suggests that S bursts are associated with a trans-equatorial loop system that connects an active region in the southern hemisphere to a bipolar region of plage in the northern hemisphere. Conclusions. We have identified polarised, short-lived solar radio bursts that have never been imaged before. They are observed at a height and frequency range where plasma emission is the dominant emission mechanism, however, they possess some of the characteristics of electron-cyclotron maser emission

    Tidal friction in close-in satellites and exoplanets. The Darwin theory re-visited

    Full text link
    This report is a review of Darwin's classical theory of bodily tides in which we present the analytical expressions for the orbital and rotational evolution of the bodies and for the energy dissipation rates due to their tidal interaction. General formulas are given which do not depend on any assumption linking the tidal lags to the frequencies of the corresponding tidal waves (except that equal frequency harmonics are assumed to span equal lags). Emphasis is given to the cases of companions having reached one of the two possible final states: (1) the super-synchronous stationary rotation resulting from the vanishing of the average tidal torque; (2) the capture into a 1:1 spin-orbit resonance (true synchronization). In these cases, the energy dissipation is controlled by the tidal harmonic with period equal to the orbital period (instead of the semi-diurnal tide) and the singularity due to the vanishing of the geometric phase lag does not exist. It is also shown that the true synchronization with non-zero eccentricity is only possible if an extra torque exists opposite to the tidal torque. The theory is developed assuming that this additional torque is produced by an equatorial permanent asymmetry in the companion. The results are model-dependent and the theory is developed only to the second degree in eccentricity and inclination (obliquity). It can easily be extended to higher orders, but formal accuracy will not be a real improvement as long as the physics of the processes leading to tidal lags is not better known.Comment: 30 pages, 7 figures, corrected typo
    • 

    corecore