In the solar convection zone acoustic waves are scattered by turbulent sound
speed fluctuations. In this paper the scattering of waves by convective cells
is treated using Rytov's technique. Particular care is taken to include
diffraction effects which are important especially for high-degree modes that
are confined to the surface layers of the Sun. The scattering leads to damping
of the waves and causes a phase shift. Damping manifests itself in the width of
the spectral peak of p-mode eigenfrequencies. The contribution of scattering to
the line widths is estimated and the sensitivity of the results on the assumed
spectrum of the turbulence is studied. Finally the theoretical predictions are
compared with recently measured line widths of high-degree modes.Comment: 26 pages, 7 figures, accepted by MNRA