432 research outputs found

    New aspects of electron transfer revealed by the crystal structure of a truncated bovine adrenodoxin, Adx(4–108)

    Get PDF
    AbstractBackground: Adrenodoxin (Adx) is a [2Fe–2S] ferredoxin involved in steroid hormone biosynthesis in the adrenal gland mitochondrial matrix of mammals. Adx is a small soluble protein that transfers electrons from adrenodoxin reductase (AR) to different cytochrome P450 isoforms where they are consumed in hydroxylation reactions. A crystallographic study of Adx is expected to reveal the structural basis for an important electron transfer reaction mediated by a vertebrate [2Fe–2S] ferredoxin.Results: The crystal structure of a truncated bovine adrenodoxin, Adx(4–108), was determined at 1.85 Ă„ resolution and refined to a crystallographic R value of 0.195. The structure was determined using multiple wavelength anomalous dispersion phasing techniques, making use of the iron atoms in the [2Fe–2S] cluster of the protein. The protein displays the compact (α+ÎČ) fold typical for [2Fe–2S] ferredoxins. The polypeptide chain is organized into a large core domain and a smaller interaction domain which comprises 35 residues, including all those previously determined to be involved in binding to AR and cytochrome P450. A small interdomain motion is observed as a structural difference between the two independent molecules in the asymmetric unit of the crystal. Charged residues of Adx(4–108) are clustered to yield a strikingly asymmetric electric potential of the protein molecule.Conclusions: The crystal structure of Adx(4–108) provides the first detailed description of a vertebrate [2Fe–2S] ferredoxin and serves to explain a large body of biochemical studies in terms of a three-dimensional structure. The structure suggests how a change in the redox state of the [2Fe–2S] cluster may be coupled to a domain motion of the protein. It seems likely that the clearly asymmetric charge distribution on the surface of Adx(4–108) and the resulting strong molecular dipole are involved in electrostatic steering of the interactions with AR and cytochrome P450

    Influence of renal replacement modalities on amikacin population pharmacokinetics in critically ill patients on continuous renal replacement therapy

    Get PDF
    The objective of this study was to describe amikacin pharmacokinetics (PK) in critically ill patients receiving equal doses (30 ml/kg of body weight/h) of continuous venovenous hemofiltration (CVVH) and continuous venovenous hemodiafiltration (CVVHDF). Patients receiving amikacin and undergoing CVVH or CVVHDF were eligible. Population pharmacokinetic analysis and Monte Carlo simulation were undertaken using the Pmetrics software package for R. Sixteen patients (9 undergoing CVVH, 11 undergoing CVVHDF) and 20 sampling intervals were analyzed. A two-compartment linear model best described the data. Patient weight was the only covariate that was associated with drug clearance. The mean +/- standard deviation parameter estimates were 25.2 +/- 17.3 liters for the central volume, 0.89 +/- 1.17 h(-1) for the rate constant for the drug distribution from the central to the peripheral compartment, 2.38 +/- 6.60 h(-1) for the rate constant for the drug distribution from the peripheral to the central compartment, 4.45 +/- 2.35 liters/h for hemodiafiltration clearance, and 4.69 +/- 2.42 liters/h for hemofiltration clearance. Dosing simulations for amikacin supported the use of high dosing regimens (>= 25 mg/kg) and extended intervals (36 to 48 h) for most patients when considering PK/pharmacodynamic (PD) targets of a maximum concentration in plasma (C-max)/MIC ratio of >= 8 and a minimal concentration o

    VEGF and the Fab fragment of a humanized neutralizing antibody: crystal structure of the complex at 2.4 Ă„ resolution and mutational analysis of the interface

    Get PDF
    AbstractBackground: Vascular endothelial growth factor (VEGF) is a highly specific angiogenic growth factor; anti-angiogenic treatment through inhibition of receptor activation by VEGF might have important therapeutic applications in diseases such as diabetic retinopathy and cancer. A neutralizing anti-VEGF antibody shown to suppress tumor growth in an in vivo murine model has been used as the basis for production of a humanized version.Results: We present the crystal structure of the complex between VEGF and the Fab fragment of this humanized antibody, as well as a comprehensive alanine-scanning analysis of the contact residues on both sides of the interface. Although the VEGF residues critical for antibody binding are distinct from those important for high-affinity receptor binding, they occupy a common region on VEGF, demonstrating that the neutralizing effect of antibody binding results from steric blocking of VEGF–receptor interactions. Of the residues buried in the VEGF–Fab interface, only a small number are critical for high-affinity binding; the essential VEGF residues interact with those of the Fab fragment, generating a remarkable functional complementarity at the interface.Conclusions: Our findings suggest that the character of antigen–antibody interfaces is similar to that of other protein–protein interfaces, such as ligand–receptor interactions; in the case of VEGF, the principal difference is that the residues essential for binding to the Fab fragment are concentrated in one continuous segment of polypeptide chain, whereas those essential for binding to the receptor are distributed over four different segments and span across the dimer interface

    A Current Induced Transition in atomic-sized contacts of metallic Alloys

    Get PDF
    We have measured conductance histograms of atomic point contacts made from the noble-transition metal alloys CuNi, AgPd, and AuPt for a concentration ratio of 1:1. For all alloys these histograms at low bias voltage (below 300 mV) resemble those of the noble metals whereas at high bias (above 300 mV) they resemble those of the transition metals. We interpret this effect as a change in the composition of the point contact with bias voltage. We discuss possible explanations in terms of electromigration and differential diffusion induced by current heating.Comment: 5 pages, 6 figure

    Characterization of pearl millet root architecture and anatomy reveals three types of lateral roots

    Get PDF
    Pearl millet plays an important role for food security in arid regions of Africa and India. Nevertheless, it is considered an orphan crop as it lags far behind other cereals in terms of genetic improvement efforts. Breeding pearl millet varieties with improved root traits promises to deliver benefits in water and nutrient acquisition. Here, we characterize of early pearl millet root system development using several different root phenotyping approaches that include rhizotrons and microCT. We report that early stage pearl millet root system development is characterized by a fast growing primary root that quickly colonizes deeper soil horizons. We also describe root anatomical studies that revealed 3 distinct types of lateral roots that form on both primary roots and crown roots. Finally, we detected significant variation for two root architectural traits in pearl millet inbred lines. This study provides the basis for subsequent genetic experiments to identify loci associated with interesting early root development traits in this important cereal

    Synaptic processes and immune-related pathways implicated in Tourette syndrome

    Get PDF
    Tourette syndrome (TS) is a neuropsychiatric disorder of complex genetic architecture involving multiple interacting genes. Here, we sought to elucidate the pathways that underlie the neurobiology of the disorder through genome-wide analysis. We analyzed genome-wide genotypic data of 3581 individuals with TS and 7682 ancestry-matched controls and investigated associations of TS with sets of genes that are expressed in particular cell types and operate in specific neuronal and glial functions. We employed a self-contained, set-based association method (SBA) as well as a competitive gene set method (MAGMA) using individual-level genotype data to perform a comprehensive investigation of the biological background of TS. Our SBA analysis identified three significant gene sets after Bonferroni correction, implicating ligand-gated ion channel signaling, lymphocytic, and cell adhesion and transsynaptic signaling processes. MAGMA analysis further supported the involvement of the cell adhesion and trans-synaptic signaling gene set. The lymphocytic gene set was driven by variants in FLT3, raising an intriguing hypothesis for the involvement of a neuroinflammatory element in TS pathogenesis. The indications of involvement of ligand-gated ion channel signaling reinforce the role of GABA in TS, while the association of cell adhesion and trans-synaptic signaling gene set provides additional support for the role of adhesion molecules in neuropsychiatric disorders. This study reinforces previous findings but also provides new insights into the neurobiology of TS

    An Introduction to the \u27Oceans and Society: Blue Planet\u27 Initiative

    Get PDF
    We live on a blue planet, and Earth’s waters benefit many sectors of society. The future of our blue planet is increasingly reliant on the services delivered by marine, coastal and inland waters and on the advancement of effective, evidence-based decisions on sustainable development. ‘Oceans and Society: Blue Planet’ is an initiative of the Group on Earth Observations (GEO) that aims to ensure the sustained development and use of ocean and coastal observations for the benefit of society. The initiative works to advance and exploit synergies among the many observational programmes devoted to ocean and coastal waters; to improve engagement with a variety of stakeholders for enhancing the timeliness, quality and range of information delivered; and to raise awareness of the societal benefits of ocean observations at the public and policy levels. This paper summarises the role of the initiative, current activities and considerations for future directions

    Insight into the induction mechanism of the GntR/HutC bacterial transcription regulator YvoA

    Get PDF
    YvoA is a GntR/HutC transcription regulator from Bacillus subtilis implicated in the regulation of genes from the N-acetylglucosamine-degrading pathway. Its 2.4-Å crystal structure reveals a homodimeric assembly with each monomer displaying a two-domain fold. The C-terminal domain, which binds the effector N-acetylglucosamine-6-phosphate, adopts a chorismate lyase fold, whereas the N-terminal domain contains a winged helix–turn–helix DNA-binding domain. Isothermal titration calorimetry and site-directed mutagenesis revealed that the effector-binding site in YvoA coincides with the active site of related chorismate lyase from Escherichia coli. The characterization of the DNA- and effector-binding properties of two disulfide-bridged mutants that lock YvoA in two distinct conformational states provides for the first time detailed insight into the allosteric mechanism through which effector binding modulates DNA binding and, thereby regulates transcription in a representative GntR/HutC family member. Central to this allosteric coupling mechanism is a loop-to-helix transition with the dipole of the newly formed helix pointing toward the phosphate of the effector. This transition goes in hand with the emergence of internal symmetry in the effector-binding domain and, in addition, leads to a 122° rotation of the DNA-binding domains that is best described as a jumping-jack-like motion

    LSST: from Science Drivers to Reference Design and Anticipated Data Products

    Get PDF
    (Abridged) We describe here the most ambitious survey currently planned in the optical, the Large Synoptic Survey Telescope (LSST). A vast array of science will be enabled by a single wide-deep-fast sky survey, and LSST will have unique survey capability in the faint time domain. The LSST design is driven by four main science themes: probing dark energy and dark matter, taking an inventory of the Solar System, exploring the transient optical sky, and mapping the Milky Way. LSST will be a wide-field ground-based system sited at Cerro Pach\'{o}n in northern Chile. The telescope will have an 8.4 m (6.5 m effective) primary mirror, a 9.6 deg2^2 field of view, and a 3.2 Gigapixel camera. The standard observing sequence will consist of pairs of 15-second exposures in a given field, with two such visits in each pointing in a given night. With these repeats, the LSST system is capable of imaging about 10,000 square degrees of sky in a single filter in three nights. The typical 5σ\sigma point-source depth in a single visit in rr will be ∌24.5\sim 24.5 (AB). The project is in the construction phase and will begin regular survey operations by 2022. The survey area will be contained within 30,000 deg2^2 with ÎŽ<+34.5∘\delta<+34.5^\circ, and will be imaged multiple times in six bands, ugrizyugrizy, covering the wavelength range 320--1050 nm. About 90\% of the observing time will be devoted to a deep-wide-fast survey mode which will uniformly observe a 18,000 deg2^2 region about 800 times (summed over all six bands) during the anticipated 10 years of operations, and yield a coadded map to r∌27.5r\sim27.5. The remaining 10\% of the observing time will be allocated to projects such as a Very Deep and Fast time domain survey. The goal is to make LSST data products, including a relational database of about 32 trillion observations of 40 billion objects, available to the public and scientists around the world.Comment: 57 pages, 32 color figures, version with high-resolution figures available from https://www.lsst.org/overvie

    Synaptic processes and immune-related pathways implicated in Tourette syndrome

    Get PDF
    Tourette syndrome (TS) is a neuropsychiatric disorder of complex genetic architecture involving multiple interacting genes. Here, we sought to elucidate the pathways that underlie the neurobiology of the disorder through genome-wide analysis. We analyzed genome-wide genotypic data of 3581 individuals with TS and 7682 ancestry-matched controls and investigated associations of TS with sets of genes that are expressed in particular cell types and operate in specific neuronal and glial functions. We employed a self-contained, set-based association method (SBA) as well as a competitive gene set method (MAGMA) using individual-level genotype data to perform a comprehensive investigation of the biological background of TS. Our SBA analysis identified three significant gene sets after Bonferroni correction, implicating ligand-gated ion channel signaling, lymphocytic, and cell adhesion and transsynaptic signaling processes. MAGMA analysis further supported the involvement of the cell adhesion and trans-synaptic signaling gene set. The lymphocytic gene set was driven by variants in FLT3, raising an intriguing hypothesis for the involvement of a neuroinflammatory element in TS pathogenesis. The indications of involvement of ligand-gated ion channel signaling reinforce the role of GABA in TS, while the association of cell adhesion and trans-synaptic signaling gene set provides additional support for the role of adhesion molecules in neuropsychiatric disorders. This study reinforces previous findings but also provides new insights into the neurobiology of TS
    • 

    corecore