355 research outputs found

    Resurgence of interest in the hemodynamic alterations of advanced heart failure

    Get PDF
    Historically, cardiac insufficiency has always being allocated to be the culprit lesion of the heart failure syndrome. However, contemporary heart failure pharmacotherapy solely focuses on preservation of neurohormonal homeostasis. The research described in this manuscript is the result of thorough investigation of the hemodynamic alterations of hundreds of patients admitted for advanced decompensated heart failure (ADHF). Firstly, our data suggest that progressive cardiac insufficiency and hemodynamic derangements assessed through invasive hemodynamic monitoring, are still contributing to short- and long-term compromise, and this independent of race or gender. In addition, we demonstrated that restoring an optimal hemodynamic balance with add-on afterload reduction provides incremental intermediate- and long-term benefits over evidence based neurohormonal blockade alone. Indeed parental vasodilator therapy with sodium nitroprusside can be safely administered to achieve more hemodynamic improvement in patients presenting with ADHF. In addition, the institution of a more aggressive oral vasodilator regimen with isosorbide diniatrate / hydralazine over standard neurohormonal antagonists at the time of discharge after an episode of ADHF can safely maintain these hemodynamic improvements leading to improved outcomes. Another novel insight comes from the notice that venous congestion and raised intra-abdominal pressure, more than impaired cardiac output, seem to be related to the development of worsening renal function in patients admitted with ADHF. Treatment strategies with the aim of better renal preservation should therefore focus how to safely reduce this renal venous congestion with diuretic therapy, ultrafiltration or paracentesis whenever indicated. Finally, we demonstrated that cardiac resynchronization therapy (CRT) really acts as a novel "hemodynamic therapy" for advanced heart failure patients even in the patient population previously categorized as "non-responders". Moreover, we have proven that the phenotypic improvement in heart failure status after prolonged CRT is paralleled by a reversed left ventricualr remodeling and recovery of left ventricular contractility. Thus, prolonged (hemodynamic) unloading of the heart will lead to physiological changes on the myocyte level in hearts once destined to only further deteriorate

    Sodium and potassium changes during decongestion with acetazolamide:A pre-specified analysis from the ADVOR trial

    Get PDF
    AIMS: Acetazolamide, an inhibitor of proximal tubular sodium reabsorption, leads to more effective decongestion in acute heart failure (AHF). It is unknown whether acetazolamide alters serum sodium and potassium levels on top of loop diuretics and if baseline values modify the treatment effect of acetazolamide.METHODS AND RESULTS: This is a pre-specified sub-analysis of the ADVOR trial that randomized 519 patients with AHF and volume overload in a 1:1 ratio to intravenous acetazolamide or matching placebo on top of standardized intravenous loop diuretics. Mean potassium and sodium levels at randomization were 4.2 ± 0.6 and 139 ± 4 mmol/L in the acetazolamide arm versus 4.2 ± 0.6 and 140 ± 4 mmol/L in the placebo arm. Hypokalaemia (&lt;3.5 mmol/L) on admission was present in 44 (9%) patients and hyponatraemia (≤135 mmol/L) in 82 (16%) patients. After 3 days of treatment, 44 (17%) patients in the acetazolamide arm and 35 (14%) patients in the placebo arm developed hyponatraemia (p = 0.255). Patients randomized to acetazolamide demonstrated a slight decrease in mean potassium levels during decongestion, which was non-significant over time (p = 0.053) and had no significant impact on hypokalaemia incidence (p = 0.061). Severe hypokalaemia (&lt;3.0 mmol/L) occurred in only 7 (1%) patients, similarly distributed between the two treatment arms (p = 0.676). Randomization towards acetazolamide improved decongestive response irrespective of baseline serum sodium and potassium levels.CONCLUSIONS: Acetazolamide on top of standardized loop diuretic therapy does not lead to clinically important hypokalaemia or hyponatraemia and improves decongestion over the entire range of baseline serum potassium and sodium levels.</p

    Crystal structure of dichlorido(4,11-dimethyl-1,4,8,11-tetraazabicyclo[6.6.2]hexadecane)iron(III) hexafluoridophosphate

    Get PDF
    The title compound, [FeCl₂(C₁₄H₃₀N₄)]PF₆, contains Fe³⁺ coordinated by the four nitro­gen atoms of an ethyl­ene cross-bridged cyclam macrocycle and two cis chloride ligands in a distorted octa­hedral environment. In contrast to other similar compounds this is a monomer. Inter­molecular C-H...Cl inter­actions exist in the structure between the complex ions. Comparison with the mononuclear Fe²⁺ complex of the same ligand shows that the smaller Fe³⁺ ion is more fully engulfed by the cavity of the bicyclic ligand. Comparison with the μ-oxido dinuclear complex of an unsubstituted ligand of the same size demonstrates that the methyl groups of 4,11-dimethyl-1,4,8,11-tetra­aza­bicyclo­[6.6.2]hexa­decane prevent dimerization upon oxidation

    Controlling crystallization and its absence: Proteins, colloids and patchy models

    Full text link
    The ability to control the crystallization behaviour (including its absence) of particles, be they biomolecules such as globular proteins, inorganic colloids, nanoparticles, or metal atoms in an alloy, is of both fundamental and technological importance. Much can be learnt from the exquisite control that biological systems exert over the behaviour of proteins, where protein crystallization and aggregation are generally suppressed, but where in particular instances complex crystalline assemblies can be formed that have a functional purpose. We also explore the insights that can be obtained from computational modelling, focussing on the subtle interplay between the interparticle interactions, the preferred local order and the resulting crystallization kinetics. In particular, we highlight the role played by ``frustration'', where there is an incompatibility between the preferred local order and the global crystalline order, using examples from atomic glass formers and model anisotropic particles.Comment: 11 pages, 7 figure

    Association between loop diuretic dose changes and outcomes in chronic heart failure: observations from the ESC-EORP Heart Failure Long-Term Registry

    Get PDF
    [Abstract] Aims. Guidelines recommend down-titration of loop diuretics (LD) once euvolaemia is achieved. In outpatients with heart failure (HF), we investigated LD dose changes in daily cardiology practice, agreement with guideline recommendations, predictors of successful LD down-titration and association between dose changes and outcomes. Methods and results. We included 8130 HF patients from the ESC-EORP Heart Failure Long-Term Registry. Among patients who had dose decreased, successful decrease was defined as the decrease not followed by death, HF hospitalization, New York Heart Association class deterioration, or subsequent increase in LD dose. Mean age was 66±13 years, 71% men, 62% HF with reduced ejection fraction, 19% HF with mid-range ejection fraction, 19% HF with preserved ejection fraction. Median [interquartile range (IQR)] LD dose was 40 (25–80) mg. LD dose was increased in 16%, decreased in 8.3% and unchanged in 76%. Median (IQR) follow-up was 372 (363–419) days. Diuretic dose increase (vs. no change) was associated with HF death [hazard ratio (HR) 1.53, 95% confidence interval (CI) 1.12–2.08; P = 0.008] and nominally with cardiovascular death (HR 1.25, 95% CI 0.96–1.63; P = 0.103). Decrease of diuretic dose (vs. no change) was associated with nominally lower HF (HR 0.59, 95% CI 0.33–1.07; P = 0.083) and cardiovascular mortality (HR 0.62 95% CI 0.38–1.00; P = 0.052). Among patients who had LD dose decreased, systolic blood pressure [odds ratio (OR) 1.11 per 10 mmHg increase, 95% CI 1.01–1.22; P = 0.032], and absence of (i) sleep apnoea (OR 0.24, 95% CI 0.09–0.69; P = 0.008), (ii) peripheral congestion (OR 0.48, 95% CI 0.29–0.80; P = 0.005), and (iii) moderate/severe mitral regurgitation (OR 0.57, 95% CI 0.37–0.87; P = 0.008) were independently associated with successful decrease. Conclusion. Diuretic dose was unchanged in 76% and decreased in 8.3% of outpatients with chronic HF. LD dose increase was associated with worse outcomes, while the LD dose decrease group showed a trend for better outcomes compared with the no-change group. Higher systolic blood pressure, and absence of (i) sleep apnoea, (ii) peripheral congestion, and (iii) moderate/severe mitral regurgitation were independently associated with successful dose decrease

    'Time is prognosis' in heart failure: time-to-treatment initiation as a modifiable risk factor.

    Get PDF
    In heart failure (HF), acute decompensation can occur quickly and unexpectedly because of worsening of chronic HF or to new-onset HF diagnosed for the first time ('de novo'). Patients presenting with acute HF (AHF) have a poor prognosis comparable with those with acute myocardial infarction, and any delay of treatment initiation is associated with worse outcomes. Recent HF guidelines and recommendations have highlighted the importance of a timely diagnosis and immediate treatment for patients presenting with AHF to decrease disease progression and improve prognosis. However, based on the available data, there is still uncertainty regarding the optimal 'time-to-treatment' effect in AHF. Furthermore, the immediate post-worsening HF period plays an important role in clinical outcomes in HF patients after hospitalization and is known as the 'vulnerable phase' characterized by high risk of readmission and early death. Early and intensive treatment for HF patients in the 'vulnerable phase' might be associated with lower rates of early readmission and mortality. Additionally, in the chronic stable HF outpatient, treatments are often delayed or not initiated when symptoms are stable, ignoring the risk for adverse outcomes such as sudden death. Consequently, there is a dire need to better identify HF patients during hospitalization and after discharge and treating them adequately to improve their prognosis. HF is an urgent clinical scenario along all its stages and disease conditions. Therefore, time plays a significant role throughout the entire patient's journey. Therapy should be optimized as soon as possible, because this is beneficial regardless of severity or duration of HF. Time lavished before treatment initiation is recognized as important modifiable risk factor in HF

    1954: Abilene Christian College Bible Lectures - Full Text

    Get PDF
    Preface The 1954 Abilene Christian College Lectureship was one of the best attended and most successful in the history of the school. Considerable interest was manifested in the timely theme, “Overcoming Dangerous Tendencies,” and in the two special topics, “Ways and Means of Doing Mission Work,” and “Caring For Widows and Orphans.” The reports from the mission fields were highly stimulating, and all in all, the speeches were unusually high caliber. The Panel Discussions were also on timely subjects and well presented. They received a warm response, as did also the thirty classes that were conducted each day. These classes were taught by persons expert in their particular fields, and covered a wide range of interests to the faithful, working Christian. We at Abilene Christian College predict for this book of Lectures a wide and hearty reception, and believe that its reading will issue in profit to the individual and to the church at large. J. D. Thomas Lectureship Directo
    corecore