12 research outputs found

    Stone Age Yersinia pestis genomes shed light on the early evolution, diversity, and ecology of plague

    Get PDF
    The bacterial pathogenYersinia pestisgave rise to devastating outbreaks throughouthuman history, and ancient DNA evidence has shown it afflicted human populations asfar back as the Neolithic.Y. pestisgenomes recovered from the Eurasian Late Neolithic/Early Bronze Age (LNBA) period have uncovered key evolutionary steps that led to itsemergence from aYersinia pseudotuberculosis-like progenitor; however, the number ofreconstructed LNBA genomes are too few to explore its diversity during this criticalperiod of development. Here, we present 17Y. pestisgenomes dating to 5,000 to 2,500y BP from a wide geographic expanse across Eurasia. This increased dataset enabled usto explore correlations between temporal, geographical, and genetic distance. Ourresults suggest a nonflea-adapted and potentially extinct single lineage that persistedover millennia without significant parallel diversification, accompanied by rapid dis-persal across continents throughout this period, a trend not observed in other pathogensfor which ancient genomes are available. A stepwise pattern of gene loss provides fur-ther clues on its early evolution and potential adaptation. We also discover the presenceof theflea-adapted form ofY. pestisin Bronze Age Iberia, previously only identified inin the Caucasus and the Volga regions, suggesting a much wider geographic spread ofthis form ofY. pestis. Together, these data reveal the dynamic nature of plague’s forma-tive years in terms of its early evolution and ecology

    The genomic history of the Iberian Peninsula over the past 8000 years

    Get PDF
    We assembled genome-wide data from 271 ancient Iberians, of whom 176 are from the largely unsampled period after 2000 BCE, thereby providing a high-resolution time transect of the Iberian Peninsula.We document high genetic substructure between northwestern and southeastern hunter-gatherers before the spread of farming.We reveal sporadic contacts between Iberia and North Africa by ~2500 BCE and, by ~2000 BCE, the replacement of 40% of Iberia's ancestry and nearly 100% of its Y-chromosomes by people with Steppe ancestry.We show that, in the Iron Age, Steppe ancestry had spread not only into Indo-European-speaking regions but also into non-Indo-European-speaking ones, and we reveal that present-day Basques are best described as a typical Iron Age population without the admixture events that later affected the rest of Iberia. Additionally, we document how, beginning at least in the Roman period, the ancestry of the peninsula was transformed by gene flow from North Africa and the eastern Mediterranean

    Seasonal shepherds’ settlements in mountain areas from Neolithic to present: Aralar – Gipuzkoa (Basque country, Spain)

    No full text
    Aralar is a karstic mountainous landscape situated to the south of the western-most part of the Pyreneeswhere, apart from forests, mountain pastures are very important. We have found evidence of seasonalshepherds' settlements from the Neolithic to the present in the form of megaliths, caves and foundationsof dwelling huts dating from the Bronze Age, and confirmed by radiocarbon dating. Pastoralism, apartfrom gathering and some hunting, enables the use of resources in these areas. The environmental,cultural and economic conditions determine the characteristics of the animal herds here. Thus, mountainareas are used in summer, when grass and nutritional resources are good but, when lignification in-creases, the livestock is moved lower down the valleys. More than two decades of archaeological researchin this landscape has helped to understand the shepherds' way of life over time.Peer Reviewe

    Agrarian landscapes in the Iberian Iron Age: Mountain communities and land use in southeastern Iberia

    No full text
    Agrarian landscapes are among the least understood features of first millennium B.C. societies in the western Mediterranean. Studies of such landscapes in the context of the Iberian Iron Age have been based essentially on the archeological record in places used for purposes other than farming, particularly settlements and areas reserved for burials and rituals, or on the identification of the possible use of fertilizers. Here we present a multiproxy analysis of an agrarian landscape based on geoarchaeological and paleoenvironmental studies in a mountainous region in southeastern Iberia. The findings confirmed the existence of farmland cultivated as early as the first millennium B.C. in the high Jutia Valley in the Spanish province of Albacete. These results suggest that coordinated analyses can be highly useful for identifying enduring agricultural practices, while contributing to a fuller understanding of western Mediterranean agrarian landscapes and their millenarian resilience, attributable to the coevolution of human communities and the environmen

    The genomic history of the Iberian Peninsula over the past 8000 years

    Get PDF
    Ancient DNA studies have begun to help us understand the genetic history and movements of people across the globe. Focusing on the Iberian Peninsula, Olalde et al. report genome-wide data from 271 ancient individuals from Iberia (see the Perspective by Vander Linden). The findings provide a comprehensive genetic time transect of the region. Linguistics analysis and genetic analysis of archaeological human remains dating from about 7000 years ago to the present elucidate the genetic impact of prehistoric and historic migrations from Europe and North Africa.Science, this issue p. 1230; see also p. 1153We assembled genome-wide data from 271 ancient Iberians, of whom 176 are from the largely unsampled period after 2000 BCE, thereby providing a high-resolution time transect of the Iberian Peninsula. We document high genetic substructure between northwestern and southeastern hunter-gatherers before the spread of farming. We reveal sporadic contacts between Iberia and North Africa by ~2500 BCE and, by ~2000 BCE, the replacement of 40% of Iberia’}s ancestry and nearly 100% of its Y-chromosomes by people with Steppe ancestry. We show that, in the Iron Age, Steppe ancestry had spread not only into Indo-European{–}speaking regions but also into non-Indo-European{–speaking ones, and we reveal that present-day Basques are best described as a typical Iron Age population without the admixture events that later affected the rest of Iberia. Additionally, we document how, beginning at least in the Roman period, the ancestry of the peninsula was transformed by gene flow from North Africa and the eastern Mediterranean

    Parallel paleogenomic transects reveal complex genetic history of early European farmers

    No full text
    Ancient DNA studies have established that Neolithic European populations were descended from Anatolian migrants1–8 who received a limited amount of admixture from resident hunter-gatherers3–5,9. Many open questions remain, however, about the spatial and temporal dynamics of population interactions and admixture during the Neolithic period. Using the highest-resolution genome-wide ancient DNA data set assembled to date—a total of 180 samples, 130 newly reported here, from the Neolithic and Chalcolithic of Hungary (6000–2900 BCE, n = 100), Germany (5500–3000 BCE, n = 42), and Spain (5500–2200 BCE, n = 38)—we investigate the population dynamics of Neolithization across Europe. We find that genetic diversity was shaped predominantly by local processes, with varied sources and proportions of hunter-gatherer ancestry among the three regions and through time. Admixture between groups with different ancestry profiles was pervasive and resulted in observable population transformation across almost all cultural transitions. Our results shed new light on the ways that gene flow reshaped European populations throughout the Neolithic period and demonstrate the potential of time-series-based sampling and modeling approaches to elucidate multiple dimensions of historical population interactions

    The genomic history of the Iberian Peninsula over the past 8000 years

    Get PDF
    We assembled genome-wide data from 271 ancient Iberians, of whom 176 are from the largely unsampled period after 2000 BCE, thereby providing a high-resolution time transect of the Iberian Peninsula. We document high genetic substructure between northwestern and southeastern hunter-gatherers before the spread of farming. We reveal sporadic contacts between Iberia and North Africa by ~2500 BCE and, by ~2000 BCE, the replacement of 40% of Iberia’s ancestry and nearly 100% of its Y-chromosomes by people with Steppe ancestry. We show that, in the Iron Age, Steppe ancestry had spread not only into Indo-European–speaking regions but also into non-Indo-European–speaking ones, and we reveal that present-day Basques are best described as a typical Iron Age population without the admixture events that later affected the rest of Iberia. Additionally, we document how, beginning at least in the Roman period, the ancestry of the peninsula was transformed by gene flow from North Africa and the eastern Mediterranean.J.M.F., F.J.L.-C., J.I.M., F.X.O., J.D., and M.S.B. were supported by HAR2017-86509-P, HAR2017-87695-P, and SGR2017-11 from the Generalitat de Catalunya, AGAUR agency. C.L.-F. was supported by Obra Social La Caixa and by FEDER-MINECO (BFU2015- 64699-P). L.B.d.L.E. was supported by REDISCO-HAR2017-88035-P (Plan Nacional I+D+I, MINECO). C.L., P.R., and C.Bl. were supported by MINECO (HAR2016-77600-P). A.Esp., J.V.-V., G.D., and D.C.S.-G. were supported by MINECO (HAR2009-10105 and HAR2013-43851-P). D.J.K. and B.J.C. were supported by NSF BCS-1460367. K.T.L., A.W., and J.M. were supported by NSF BCS-1153568. J.F.-E. and J.A.M.-A. were supported by IT622-13 Gobierno Vasco, Diputación Foral de Álava, and Diputación Foral de Gipuzkoa. We acknowledge support from the Portuguese Foundation for Science and Technology (PTDC/EPH-ARQ/4164/2014) and the FEDER-COMPETE 2020 project 016899. P.S. was supported by the FCT Investigator Program (IF/01641/2013), FCT IP, and ERDF (COMPETE2020 – POCI). M.Si. and K.D. were supported by a Leverhulme Trust Doctoral Scholarship awarded to M.B.R. and M.P. D.R. was supported by an Allen Discovery Center grant from the Paul Allen Foundation, NIH grant GM100233, and the Howard Hughes Medical Institute. V.V.-M. and W.H. were supported by the Max Planck Society
    corecore