19 research outputs found

    Plant defense under Arctic light conditions: Can plants withstand invading pests?

    Get PDF
    Global warming is predicted to change the growth conditions for plants and crops in regions at high latitudes (>60° N), including the Arctic. This will be accompanied by alterations in the composition of natural plant and pest communities, as herbivorous arthropods will invade these regions as well. Interactions between previously non-overlapping species may occur and cause new challenges to herbivore attack. However, plants growing at high latitudes experience less herbivory compared to plants grown at lower latitudes. We hypothesize that this finding is due to a gradient of constitutive chemical defense towards the Northern regions. We further hypothesize that higher level of defensive compounds is mediated by higher level of the defense-related phytohormone jasmonate. Because its biosynthesis is light dependent, Arctic summer day light conditions can promote jasmonate accumulation and, hence, downstream physiological responses. A pilot study with bilberry (Vaccinium myrtillus) plants grown under different light regimes supports the hypothesis.publishedVersio

    Plant defense under Arctic light conditions: Can plants withstand invading pests?

    Get PDF
    Global warming is predicted to change the growth conditions for plants and crops in regions at high latitudes (>60° N), including the Arctic. This will be accompanied by alterations in the composition of natural plant and pest communities, as herbivorous arthropods will invade these regions as well. Interactions between previously non-overlapping species may occur and cause new challenges to herbivore attack. However, plants growing at high latitudes experience less herbivory compared to plants grown at lower latitudes. We hypothesize that this finding is due to a gradient of constitutive chemical defense towards the Northern regions. We further hypothesize that higher level of defensive compounds is mediated by higher level of the defense-related phytohormone jasmonate. Because its biosynthesis is light dependent, Arctic summer day light conditions can promote jasmonate accumulation and, hence, downstream physiological responses. A pilot study with bilberry (Vaccinium myrtillus) plants grown under different light regimes supports the hypothesis

    Herbivory on the pedunculate oak along an urbanization gradient in Europe : Effects of impervious surface, local tree cover, and insect feeding guild

    Get PDF
    Urbanization is an important driver of the diversity and abundance of tree-associated insect herbivores, but its consequences for insect herbivory are poorly understood. A likely source of variability among studies is the insufficient consideration of intraurban variability in forest cover. With the help of citizen scientists, we investigated the independent and interactive effects of local canopy cover and percentage of impervious surface on insect herbivory in the pedunculate oak (Quercus robur L.) throughout most of its geographic range in Europe. We found that the damage caused by chewing insect herbivores as well as the incidence of leaf-mining and gall-inducing herbivores consistently decreased with increasing impervious surface around focal oaks. Herbivory by chewing herbivores increased with increasing forest cover, regardless of impervious surface. In contrast, an increase in local canopy cover buffered the negative effect of impervious surface on leaf miners and strengthened its effect on gall inducers. These results show that – just like in non-urban areas – plant-herbivore interactions in cities are structured by a complex set of interacting factors. This highlights that local habitat characteristics within cities have the potential to attenuate or modify the effect of impervious surfaces on biotic interactions.Agence Nationale de la Recherche, Grant/Award Number: ANR-10--LABX-45; Fondation BNP Paribas.info:eu-repo/semantics/publishedVersio

    Herbivory on the pedunculate oak along an urbanization gradient in Europe : Effects of impervious surface, local tree cover, and insect feeding guild

    Get PDF
    Urbanization is an important driver of the diversity and abundance of tree-associated insect herbivores, but its consequences for insect herbivory are poorly understood. A likely source of variability among studies is the insufficient consideration of intra-urban variability in forest cover. With the help of citizen scientists, we investigated the independent and interactive effects of local canopy cover and percentage of impervious surface on insect herbivory in the pedunculate oak (Quercus robur L.) throughout most of its geographic range in Europe. We found that the damage caused by chewing insect herbivores as well as the incidence of leaf-mining and gall-inducing herbivores consistently decreased with increasing impervious surface around focal oaks. Herbivory by chewing herbivores increased with increasing forest cover, regardless of impervious surface. In contrast, an increase in local canopy cover buffered the negative effect of impervious surface on leaf miners and strengthened its effect on gall inducers. These results show that-just like in non-urban areas-plant-herbivore interactions in cities are structured by a complex set of interacting factors. This highlights that local habitat characteristics within cities have the potential to attenuate or modify the effect of impervious surfaces on biotic interactions.Peer reviewe

    Search for top-down and bottom-up drivers of latitudinal trends in insect herbivory in oak trees in Europe

    Get PDF
    International audienceAim: The strength of species interactions is traditionally expected to increase toward the Equator. However, recent studies have reported opposite or inconsistent latitudinal trends in the bottom-up (plant quality) and top-down (natural enemies) forces driving herbivory. In addition, these forces have rarely been studied together thus limiting previous attempts to understand the effect of large-scale climatic gradients on herbivory. Location: Europe. Time period: 2018–2019. Major taxa studied: Quercus robur. Methods: We simultaneously tested for latitudinal variation in plant–herbivore–natural enemy interactions. We further investigated the underlying climatic factors associated with variation in herbivory, leaf chemistry and attack rates in Quercus robur across its complete latitudinal range in Europe. We quantified insect leaf damage and the incidence of specialist herbivores as well as leaf chemistry and bird attack rates on dummy caterpillars on 261 oak trees. Results: Climatic factors rather than latitude per se were the best predictors of the large-scale (geographical) variation in the incidence of gall-inducers and leaf-miners as well as in leaf nutritional content. However, leaf damage, plant chemical defences (leaf phenolics) and bird attack rates were not influenced by climatic factors or latitude. The incidence of leaf-miners increased with increasing concentrations of hydrolysable tannins, whereas the incidence of gall-inducers increased with increasing leaf soluble sugar concentration and decreased with increasing leaf C : N ratios and lignins. However, leaf traits and bird attack rates did not vary with leaf damage. Main conclusions: These findings help to refine our understanding of the bottom-up and top-down mechanisms driving geographical variation in plant–herbivore interactions, and indicate the need for further examination of the drivers of herbivory on trees

    Herbivory on the pedunculate oak along an urbanization gradient in Europe: Effects of impervious surface, local tree cover, and insect feeding guild

    Get PDF
    Urbanization is an important driver of the diversity and abundance of tree-associated insect herbivores, but its consequences for insect herbivory are poorly understood. A likely source of variability among studies is the insufficient consideration of intra-urban variability in forest cover. With the help of citizen scientists, we investigated the independent and interactive effects of local canopy cover and percentage of impervious surface on insect herbivory in the pedunculate oak (Quercus robur L.) throughout most of its geographic range in Europe. We found that the damage caused by chewing insect herbivores as well as the incidence of leaf-mining and gall-inducing herbivores consistently decreased with increasing impervious surface around focal oaks. Herbivory by chewing herbivores increased with increasing forest cover, regardless of impervious surface. In contrast, an increase in local canopy cover buffered the negative effect of impervious surface on leaf miners and strengthened its effect on gall inducers. These results show that-just like in non-urban areas-plant-herbivore interactions in cities are structured by a complex set of interacting factors. This highlights that local habitat characteristics within cities have the potential to attenuate or modify the effect of impervious surfaces on biotic interactions

    Search for top-down and bottom-up drivers of latitudinal trends in insect herbivory in oak trees in Europe

    Get PDF
    AimThe strength of species interactions is traditionally expected to increase toward the Equator. However, recent studies have reported opposite or inconsistent latitudinal trends in the bottom‐up (plant quality) and top‐down (natural enemies) forces driving herbivory. In addition, these forces have rarely been studied together thus limiting previous attempts to understand the effect of large‐scale climatic gradients on herbivory.LocationEurope.Time period2018–2019.Major taxa studiedQuercus robur.MethodsWe simultaneously tested for latitudinal variation in plant–herbivore–natural enemy interactions. We further investigated the underlying climatic factors associated with variation in herbivory, leaf chemistry and attack rates in Quercus robur across its complete latitudinal range in Europe. We quantified insect leaf damage and the incidence of specialist herbivores as well as leaf chemistry and bird attack rates on dummy caterpillars on 261 oak trees.ResultsClimatic factors rather than latitude per se were the best predictors of the large‐scale (geographical) variation in the incidence of gall‐inducers and leaf‐miners as well as in leaf nutritional content. However, leaf damage, plant chemical defences (leaf phenolics) and bird attack rates were not influenced by climatic factors or latitude. The incidence of leaf‐miners increased with increasing concentrations of hydrolysable tannins, whereas the incidence of gall‐inducers increased with increasing leaf soluble sugar concentration and decreased with increasing leaf C : N ratios and lignins. However, leaf traits and bird attack rates did not vary with leaf damage.Main conclusionsThese findings help to refine our understanding of the bottom‐up and top‐down mechanisms driving geographical variation in plant–herbivore interactions, and indicate the need for further examination of the drivers of herbivory on trees.</p

    What do we know about birds use of plant volatile cues in tritrophic interactions

    No full text
    The first study showing that birds can smell herbivore-induced plant volatiles was published ten years ago. Since then, only 12 studies have been published, showing contradictory results. This review evaluates the role of birds in relation to the crying for help hypothesis and their use of olfactory cues. In accordance with the methodologies used in previous studies, we herein provide a summary of experimental approaches and describe the advantages and disadvantages of experiments conducted in nature versus aviaries. Moreover, we recommend experimental methodologies which lead to a deeper knowledge of the topic, including reflection on the induction of plant defenses and adaptations of birds. Finally, we propose some interesting questions for future research to direct further studies towards a thorough and accurate description of birds’ roles in tritrophic interactions.The work of AM was supported by the University of South Bohemia Grant Agency (078/2018/P), KS by the Programme for Research and Mobility Support of Young Researchers (MSM200961702), and LA by the Ministry of Economy and Competitiveness (CGL2014-58890-P) and Ramón y Cajal Programme
    corecore