23 research outputs found

    Psychophysical and ergogenic effects of synchronous music during treadmill walking

    Get PDF
    The present study examined the impact of motivational music and oudeterous (neutral in terms of motivational qualities) music on endurance and a range of psychophysical indices during a treadmill walking task. Experimental participants (N = 30; mean age = 20.5 years, SD = 1.0 years) selected a program of either pop or rock tracks from artists identified in an earlier survey. They walked to exhaustion, starting at 75% maximal heart rate reserve, under conditions of motivational synchronous music, oudeterous synchronous music, and a no-music control. Dependent measures included time to exhaustion, ratings of perceived exertion (RPE), and in-task affect (both recorded at 2-min intervals), and exercise-induced feeling states. A one-way repeated measures ANOVA was used to analyze time to exhaustion data. Two-way repeated measures (Music Condition Trial Point) ANOVAs were used to analyze in-task measures, whereas a one-way repeated measures MANOVA was used to analyze the exerciseinduced feeling states data. Results indicated that endurance was increased in both music conditions and that motivational music had a greater ergogenic effect than did oudeterous music (p .05) upon RPE or exerciseinduced feeling states, although a moderate effect size was recorded for the latter (p 2 = .09). The present results indicate that motivational synchronous music can elicit an ergogenic effect and enhance in-task affect during an exhaustive endurance task

    The development of METAL-WRF Regional Model for the description of dust mineralogy in the atmosphere

    Get PDF
    The mineralogical composition of airborne dust particles is an important but often neglected parameter for several physiochemical processes, such as atmospheric radiative transfer and ocean biochemistry. We present the development of the METAL-WRF module for the simulation of the composition of desert dust minerals in atmospheric aerosols. The new development is based on the GOCART-AFWA dust module of WRF-Chem. A new wet deposition scheme has been implemented in the dust module alongside the existing dry deposition scheme. The new model includes separate prognostic fields for nine (9) minerals: illite, kaolinite, smectite, calcite, quartz, feldspar, hematite, gypsum, and phosphorus, derived from the GMINER30 database and also iron derived from the FERRUM30 database. Two regional model sensitivity studies are presented for dust events that occurred in August and December 2017, which include a comparison of the model versus elemental dust composition measurements performed in the North Atlantic (at Izaña Observatory, Tenerife Island) and in the eastern Mediterranean (at Agia Marina Xyliatos station, Cyprus Island). The results indicate the important role of dust minerals, as dominant aerosols, for the greater region of North Africa, South Europe, the North Atlantic, and the Middle East, including the dry and wet depositions away from desert sources. Overall, METAL-WRF was found to be capable of reproducing the relative abundances of the different dust minerals in the atmosphere. In particular, the concentration of iron (Fe), which is an important element for ocean biochemistry and solar absorption, was modeled in good agreement with the corresponding measurements at Izaña Observatory (22% overestimation) and at Agia Marina Xyliatos site (4% overestimation). Further model developments, including the implementation of newer surface mineralogical datasets, e.g., from the NASA-EMIT satellite mission, can be implemented in the model to improve its accuracy.This study was supported by the Hellenic Foundation for Research and Innovation project Mineralogy of Dust Emissions and Impacts on Environment and Health (MegDeth - HFRI no. 703). Part of this study was conducted within the framing of the AERO-EXTREME (PID2021-125669NB-I00) project funded by the State Research Agency/Agencia Estatal de Investigación of Spain and the European Regional Development Funds

    WUDAPT: an urban weather, climate and environmental modeling infrastructure for the Anthropocene

    Get PDF
    WUDAPT is an international community-based initiative to acquire and disseminate climate relevant data on the physical geographies of cities for modeling and analyses purposes. The current lacuna of globally consistent information on cities is a major impediment to urban climate science towards informing and developing climate mitigation and adaptation strategies at urban scales. WUDAPT consists of a database and a portal system; its database is structured into a hierarchy representing different levels of detail and the data are acquired using innovative protocols that utilize crowdsourcing approaches, Geowiki tools, freely accessible data, and building typology archetypes. The base level of information (L0) consists of Local Climate Zones (LCZ) maps of cities; each LCZ category is associated with range of values for model relevant surface descriptors (e.g. roughness, impervious surface cover, roof area, building heights, etc.). Levels 1 (L1) and 2 (L2) will provide specific intraurban values for other relevant descriptors at greater precision, such as data morphological forms, material composition data and energy usage. This article describes the status of the WUDAPT project and demonstrates its potential value using observations and models. As a community-based project, other researchers are encouraged to participate to help create a global urban database of value to urban climate scientists

    Assessment of long-term measurements of particulate matter and gaseous pollutants in South-East Mediterranean

    No full text
    Abstract This work examines long-term measurements of major criteria pollutants concentrations in an urban station in South-Eastern Mediterranean, in Nicosia – Cyprus, which is susceptible both to transboundary air pollution transport from Sahara-dust events as well as to evaporative transport of sea-sprays. The work investigates in particular the role of such multi-scale contributions in the urban air quality measurements, which are important considerations in the assessment of the effectiveness of any mitigation policies implemented by regulatory authorities. Attention is drawn in the regional-scale component of the particulate matter concentrations (PM10; ≀10 Όm in diameter) and its contribution in the local measurements. Hourly averaged data of CO, NOx and PM10 concentrations as well as of meteorological parameters were collected from the Air Quality Monitoring Station (AQMS) of the University of Cyprus over a period of more than 5 years (2008–13) and were analysed. Scanning Electron Microscope (SEM) was used to identify chemical characteristics of PM10 and to attribute it to possible sources. A total of 321 days over the entire period were found to exceed the daily limit value of 50 Όg/m3 for PM10 concentrations which corresponds to ∌19% of the actual monitored time. Numerical simulations using the Dust REgional Atmospheric Model from Barcelona Supercomputing Center (BSC/DREAM) gave a strong indication that PM10 exceedances were associated with the high regional background dust concentrations during westerly winds. It was also found that despite the implementation of tighter regulations for vehicular and industrial emissions in Europe, the monthly average concentration values of criteria pollutants do not exhibit any falling trend

    Searching for the distinctive signature of a city in atmospheric modelling: Could the Multi-Resolution Analysis (MRA) provide the DNA of a city?

    No full text
    Mesoscale meteorological models rely on urban building datasets in order to determine several urban canopy parameters, such as the urban surface cover and morphological parameters, for accurate predictions of air quality and atmospheric pollution dispersion. Due to the multi-scale nature of air pollution dispersion, such models are run at various resolutions, and therefore grid sizes, in order to reflect the scale of observation and desired outputs. In this paper, a novel methodology, the Multi-Resolution Analysis (MRA), is applied to the urban building datasets of a number of European and North-American cities in order to obtain rigorously scale-adaptive spatially-varying representations of the different urban datasets.In the context of MRA, the urban-building information signal is analysed at different levels that each corresponds to a different scale. At each level the urban signal depicting a city is decomposed into an approximation, a representation at the scale that corresponds to the level, and a detail that is the part removed from the previous level that corresponds to lower scale. One of the major capacities and outputs of the MRA application is the multi-scale representation of the urban information while not losing the ability to recover the original density of urban information due to the tracking of the details. In this paper the results of such an MRA analysis of urban building datasets of European cities (London, Marseille and Nicosia) and North-American cities (New York City, Phoenix and Seattle as well as Oklahoma) are presented; the analysis provides consistent gridded and scaled attributes as well as sub-grid information for a hierarchy of grid sizes, for example used in nested urban simulations. Moreover, through the rigorous scale-adaptive spatially-varying representations that are obtained, a sound basis for consistent inter-comparisons is enabled. Finally, the paper illustrates how the MRA can provide an innovative means to perform analyses and provide unique scale-adaptive descriptions of any urban area - in essence a DNA-like description of a city
    corecore