14 research outputs found

    A census of fishes and everything they eat: how the Census of Marine Life advanced fisheries science

    Get PDF
    The Census of Marine Life was a 10-year, international research effort to explore poorly known ocean habitats and conduct large-scale experimentation with new technology. The goal of Census 2010 in its mission statement was to describe what did live in the oceans, what does live in the oceans, and what will live in the ocean. Many of the findings and techniques from census research may prove valuable in making a transition, which many governments have publicly endorsed, from single-species fisheries management to more holistic ecosystem management. Census researchers sampled continental margins, mid-Atlantic ridges, ocean floor vents and seeps, and abyssal plains and polar seas and organized massive amounts of past and new information in a public online database called the Ocean Biogeographic Information System (www.iobis.org). The census described and categorized seamount biology worldwide for its vulnerability to fishing, advanced large-scale animal tracking with acoustic arrays and satellite archival tags, and accelerated species identification, including nearshore, coral reef, and zooplankton sampling using genetic barcoding and pyrotag sequencing for microbes and helped to launch the exciting new field of marine environmental history. Above all, the census showed the value of investing in large-scale, collaborative projects and sharing results publicly

    Enhanced monitoring of life in the sea is a critical component of conservation management and sustainable economic growth

    Get PDF
    Marine biodiversity is a fundamental characteristic of our planet that depends on and influences climate, water quality, and many ocean state variables. It is also at the core of ecosystem services that can make or break economic development in any region. Our purpose is to highlight the need for marine biological observations to inform science and conservation management and to support the blue economy. We provide ten recommendations, applicable now, to measure and forecast biological Essential Ocean Variables (EOVs) as part of economic monitoring efforts. The UN Decade of Ocean Science for Sustainable Development (2021–2030) provides a timely opportunity to implement these recommendations to benefit humanity and enable the USD 3 trillion global ocean economy expected by 2030

    Diel Variations in Survey Catch Rates and Survey Catchability of Spiny Dogfish and their Pelagic Prey in the Northeast US Continental Shelf Large Marine Ecosystem

    Get PDF
    This study examines the potential uncertainty in survey biomass estimates of Spiny Dogfish Squalus acanthias in the Northeast U.S. Continental Shelf Large Marine Ecosystem (NES LME). Diel catch-per-unit-effort (CPUE) estimates are examined from the Northeast Fisheries Science Center bottom trawl surveys conducted during autumn (1963-2009) and spring (1968-2009). Influential environmental variables on survey catchability are identified for Spiny Dogfish life history stages and five pelagic prey species: Butterfish Peprilus triacanthus, Atlantic Herring Clupea harengus, shortfin squid Illex spp., longfin squid Doryteuthis spp., and Atlantic Mackerel Scomber scombrus. Daytime survey catchability was significantly higher than nighttime catchability for most species during autumn and for mature male Spiny Dogfish, shortfin squid, and longfin squid during spring in the NES LME. For most stages and species examined, breakpoint analyses identified significant increases in CPUE in the morning, peak CPUE during the day, and significant declines in CPUE in the late afternoon. Seasonal probabilities of daytime catch were largely driven by solar zenith angle for most species, with stronger trends identified during autumn. Unadjusted CPUE estimates appear to overestimate absolute abundance, with adjustments resulting in reductions in absolute abundance ranging from 41% for Spiny Dogfish to 91% for shortfin and longfin squids. These findings have important implications for Spiny Dogfish regarding estimates of population consumption of key pelagic prey species and their ecological footprint within the NES LME

    Developing an Observing Air–Sea Interactions Strategy (OASIS) for the global ocean

    Get PDF
    The Observing Air–Sea Interactions Strategy (OASIS) is a new United Nations Decade of Ocean Science for Sustainable Development programme working to develop a practical, integrated approach for observing air–sea interactions globally for improved Earth system (including ecosystem) forecasts, CO2 uptake assessments called for by the Paris Agreement, and invaluable surface ocean information for decision makers. Our “Theory of Change” relies upon leveraged multi-disciplinary activities, partnerships, and capacity strengthening. Recommendations from >40 OceanObs’19 community papers and a series of workshops have been consolidated into three interlinked Grand Ideas for creating #1: a globally distributed network of mobile air–sea observing platforms built around an expanded array of long-term time-series stations; #2: a satellite network, with high spatial and temporal resolution, optimized for measuring air–sea fluxes; and #3: improved representation of air–sea coupling in a hierarchy of Earth system models. OASIS activities are organized across five Theme Teams: (1) Observing Network Design & Model Improvement; (2) Partnership & Capacity Strengthening; (3) UN Decade OASIS Actions; (4) Best Practices & Interoperability Experiments; and (5) Findable–Accessible–Interoperable–Reusable (FAIR) models, data, and OASIS products. Stakeholders, including researchers, are actively recruited to participate in Theme Teams to help promote a predicted, safe, clean, healthy, resilient, and productive ocean

    Advancing impact prediction and hypothesis testing in invasion ecology using a comparative functional response approach

    Full text link

    Evolution of texture during thermomechanical processing of titanium and its alloys

    No full text
    corecore