831 research outputs found
Recommended from our members
Genome-wide screening of mouse knockouts reveals novel genes required for normal integumentary and oculocutaneous structure and function.
Oculocutaneous syndromes are often due to mutations in single genes. In some cases, mouse models for these diseases exist in spontaneously occurring mutations, or in mice resulting from forward mutatagenesis screens. Here we present novel genes that may be causative for oculocutaneous disease in humans, discovered as part of a genome-wide screen of knockout-mice in a targeted single-gene deletion project. The International Mouse Phenotyping Consortium (IMPC) database (data release 10.0) was interrogated for all mouse strains with integument abnormalities, which were then cross-referenced individually to identify knockouts with concomitant ocular abnormalities attributed to the same targeted gene deletion. The search yielded 307 knockout strains from unique genes with integument abnormalities, 226 of which have not been previously associated with oculocutaneous conditions. Of the 307 knockout strains with integument abnormalities, 52 were determined to have ocular changes attributed to the targeted deletion, 35 of which represent novel oculocutaneous genes. Some examples of various integument abnormalities are shown, as well as two examples of knockout strains with oculocutaneous phenotypes. Each of the novel genes provided here are potentially relevant to the pathophysiology of human integumentary, or oculocutaneous conditions, such as albinism, phakomatoses, or other multi-system syndromes. The novel genes reported here may implicate molecular pathways relevant to these human diseases and may contribute to the discovery of novel therapeutic targets
Nanostructured luminescently labeled nucleic acids
Important and emerging trends at the interface of luminescence, nucleic acids and nanotechnology
are: (i) the conventional luminescence labeling of nucleic acid nanostructures (e.g. DNA tetrahedron);
(ii) the labeling of bulk nucleic acids (e.g. single‐stranded DNA, double‐stranded DNA) with
nanostructured luminescent labels (e.g. copper nanoclusters); and (iii) the labeling of nucleic acid
nanostructures (e.g. origami DNA) with nanostructured luminescent labels (e.g. silver
nanoclusters). This review surveys recent advances in these three different approaches to the
generation of nanostructured luminescently labeled nucleic acids, and includes both direct and
indirect labeling methods
Defined Benefit vs. Defined Contribution Plans: Only 45 Years to Retirement: What a Recent College Graduate Needs to Know
This paper defines and explains the terms essential for understanding retirement planning. It then describes the types of plans involved, defined benefit and defined contribution plans, and discusses the debate surrounding the privatization of Social Security. This paper provides statistics and facts about each of these options to better prepare a person in his or her 20s who is about to graduate from college and enter a career. Finally, the paper supplies tips on what a young person can do now to ensure a financially stable life upon retiring
Recommended from our members
Erratum: Author Correction: Identification of genes required for eye development by high-throughput screening of mouse knockouts.
[This corrects the article DOI: 10.1038/s42003-018-0226-0.]
Mouse versus Rat: Profound Differences in Meiotic Regulation at the Level of the Isolated Oocyte
Cumulus cell-enclosed oocytes (CEO), denuded oocytes (DO), or dissected follicles were obtained 44–48 hr after priming immature mice (20–23 days old) with 5 IU or immature rats (25–27 days old) with 12.5 IU of equine chorionic gonadotropin, and exposed to a variety of culture conditions. Mouse oocytes were more effectively maintained in meiotic arrest by hypoxanthine, dbcAMP, IBMX, milrinone, and 8-Br-cGMP. Atrial natriuretic peptide, a guanylate cyclase activator, suppressed maturation in CEO from both species, but mycophenolic acid reversed IBMX-maintained meiotic arrest in mouse CEO with little activity in rat CEO. IBMX-arrested mouse, but not rat, CEO were induced to undergo germinal vesicle breakdown (GVB) by follicle-stimulating hormone (FSH) and amphiregulin, while human chorionic gonadotropin (hCG) was ineffective in both species. Nevertheless, FSH and amphiregulin stimulated cumulus expansion in both species. FSH and hCG were both effective inducers of GVB in cultured mouse and rat follicles while amphiregulin was stimulatory only in mouse follicles. Changing the culture medium or altering macromolecular supplementation had no effect on FSH-induced maturation in rat CEO. The AMP-activated protein kinase (AMPK) activator, AICAR, was a potent stimulator of maturation in mouse CEO and DO, but only marginally stimulatory in rat CEO and ineffective in rat DO. The AMPK inhibitor, compound C, blocked meiotic induction more effectively in hCG-treated mouse follicles and heat-treated mouse CEO. Both agents produced contrasting results on polar body formation in cultured CEO in the two species. Active AMPK was detected in germinal vesicles of immature mouse, but not rat, oocytes prior to hCG-induced maturation in vivo; it colocalized with chromatin after GVB in rat and mouse oocytes, but did not appear at the spindle poles in rat oocytes as it did in mouse oocytes. Finally, cultured mouse and rat CEO displayed disparate maturation responses to energy substrate manipulation. These data highlight significant differences in meiotic regulation between the two species, and demonstrate a greater potential in mice for control at the level of the cumulus CEO
Targeting of NAT10 enhances healthspan in a mouse model of human accelerated aging syndrome.
Hutchinson-Gilford Progeria Syndrome (HGPS) is a rare, but devastating genetic disease characterized by segmental premature aging, with cardiovascular disease being the main cause of death. Cells from HGPS patients accumulate progerin, a permanently farnesylated, toxic form of Lamin A, disrupting the nuclear shape and chromatin organization, leading to DNA-damage accumulation and senescence. Therapeutic approaches targeting farnesylation or aiming to reduce progerin levels have provided only partial health improvements. Recently, we identified Remodelin, a small-molecule agent that leads to amelioration of HGPS cellular defects through inhibition of the enzyme N-acetyltransferase 10 (NAT10). Here, we show the preclinical data demonstrating that targeting NAT10 in vivo, either via chemical inhibition or genetic depletion, significantly enhances the healthspan in a Lmna G609G HGPS mouse model. Collectively, the data provided here highlights NAT10 as a potential therapeutic target for HGPS
Broad AOX expression in a genetically tractable mouse model does not disturb normal physiology
Plants and many lower organisms, but not mammals, express alternative oxidases (AOXs) that branch the mitochondrial respiratory chain, transferring electrons directly from ubiquinol to oxygen without proton pumping. Thus, they maintain electron flow under conditions when the classical respiratory chain is impaired, limiting excess production of oxygen radicals and supporting redox and metabolic homeostasis. AOX from Ciona intestinalis has been used to study and mitigate mitochondrial impairments in mammalian cell lines, Drosophila disease models and, most recently, in the mouse, where multiple lentivector-AOX transgenes conferred substantial expression in specific tissues. Here, we describe a genetically tractable mouse model in which Ciona AOX has been targeted to the Rosa26 locus for ubiquitous expression. The AOX(Rosa26) mouse exhibited only subtle phenotypic effects on respiratory complex formation, oxygen consumption or the global metabolome, and showed an essentially normal physiology. AOX conferred robust resistance to inhibitors of the respiratory chain in organello; moreover, animals exposed to a systemically applied LD50 dose of cyanide did not succumb. The AOX(Rosa26) mouse is a useful tool to investigate respiratory control mechanisms and to decipher mitochondrial disease aetiology in vivo.Peer reviewe
XGAP: a uniform and extensible data model and software platform for genotype and phenotype experiments.
We present an extensible software model for the genotype and phenotype community, XGAP. Readers can download a standard XGAP (http://www.xgap.org) or auto-generate a custom version using MOLGENIS with programming interfaces to R-software and web-services or user interfaces for biologists. XGAP has simple load formats for any type of genotype, epigenotype, transcript, protein, metabolite or other phenotype data. Current functionality includes tools ranging from eQTL analysis in mouse to genome-wide association studies in humans.RIGHTS : This article is licensed under the BioMed Central licence at http://www.biomedcentral.com/about/license which is similar to the 'Creative Commons Attribution Licence'. In brief you may : copy, distribute, and display the work; make derivative works; or make commercial use of the work - under the following conditions: the original author must be given credit; for any reuse or distribution, it must be made clear to others what the license terms of this work are
- …
