34 research outputs found

    Decay properties of 22Ne+α^{22}\mathrm{Ne} + \alpha resonances and their impact on ss-process nucleosynthesis

    Get PDF
    The astrophysical ss-process is one of the two main processes forming elements heavier than iron. A key outstanding uncertainty surrounding ss-process nucleosynthesis is the neutron flux generated by the 22Ne(α,n)25Mg{}^{22}\mathrm{Ne}(\alpha, n){}^{25}\mathrm{Mg} reaction during the He-core and C-shell burning phases of massive stars. This reaction, as well as the competing 22Ne(α,γ)26Mg{}^{22}\mathrm{Ne}(\alpha, \gamma){}^{26}\mathrm{Mg} reaction, is not well constrained in the important temperature regime from 0.2{\sim} 0.2--0.40.4~GK, owing to uncertainties in the nuclear properties of resonances lying within the Gamow window. To address these uncertainties, we have performed a new measurement of the 22Ne(6Li,d)26Mg{}^{22}\mathrm{Ne}({}^{6}\mathrm{Li}, d){}^{26}\mathrm{Mg} reaction in inverse kinematics, detecting the outgoing deuterons and 25,26Mg{}^{25,26}\mathrm{Mg} recoils in coincidence. We have established a new n/γn / \gamma decay branching ratio of 1.14(26)1.14(26) for the key Ex=11.32E_x = 11.32 MeV resonance in 26Mg^{26}\mathrm{Mg}, which results in a new (α,n)(\alpha, n) strength for this resonance of 42(11) μ42(11)~\mueV when combined with the well-established (α,γ)(\alpha, \gamma) strength of this resonance. We have also determined new upper limits on the α\alpha partial widths of neutron-unbound resonances at Ex=11.112,E_x = 11.112, 11.16311.163, 11.16911.169, and 11.17111.171 MeV. Monte-Carlo calculations of the stellar 22Ne(α,n)25Mg{}^{22}\mathrm{Ne}(\alpha, n){}^{25}\mathrm{Mg} and 22Ne(α,γ)26Mg{}^{22}\mathrm{Ne}(\alpha, \gamma){}^{26}\mathrm{Mg} rates, which incorporate these results, indicate that both rates are substantially lower than previously thought in the temperature range from 0.2{\sim} 0.2--0.40.4~GK.Comment: 17 pages, 4 figures, accepted for publication in Phys. Lett.

    New constraints on the Al 25 (p,γ) reaction and its influence on the flux of cosmic γ rays from classical nova explosions

    Get PDF
    The astrophysical Al25(p,γ)Si26 reaction represents one of the key remaining uncertainties in accurately modeling the abundance of radiogenic Al26 ejected from classical novae. Specifically, the strengths of key proton-unbound resonances in Si26, that govern the rate of the Al25(p,γ) reaction under explosive astrophysical conditions, remain unsettled. Here, we present a detailed spectroscopy study of the Si26 mirror nucleus Mg26. We have measured the lifetime of the 3+, 6.125-MeV state in Mg26 to be 19(3)fs and provide compelling evidence for the existence of a 1- state in the T=1,A=26 system, indicating a previously unaccounted for=1 resonance in the Al25(p,γ) reaction. Using the presently measured lifetime, together with the assumption that the likely 1- state corresponds to a resonance in the Al25+p system at 435.7(53) keV, we find considerable differences in the Al25(p,γ) reaction rate compared to previous works. Based on current nova models, we estimate that classical novae may be responsible for up to ≈15% of the observed galactic abundance of Al26.This work was supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics, under Contract No. DEAC02-06CH11357 and Grants No. DEFG02-94-ER40834, No. DEFG02-97-ER41041, No. DEFG02-97-ER41043, and No. DE-FG02-93ER4077. U.K. personnel were supported by the Science and Technologies Facilities Council (STFC). This work was partially supported by the Spanish MINECO Grant No. AYA2017-86274-P, by the E.U. FEDER funds, and by the AGAUR/Generalitat de Catalunya Grant No. SGR-661/2017. This article benefited from discussions within the “ChETEC” COST Action (Grant No. CA16117). This research used resources of ANL's ATLAS facility, which is a DOE Office of Science User facility

    Advances in the Direct Study of Carbon Burning in Massive Stars

    Get PDF
    The C12+C12 fusion reaction plays a critical role in the evolution of massive stars and also strongly impacts various explosive astrophysical scenarios. The presence of resonances in this reaction at energies around and below the Coulomb barrier makes it impossible to carry out a simple extrapolation down to the Gamow window-the energy regime relevant to carbon burning in massive stars. The C12+C12 system forms a unique laboratory for challenging the contemporary picture of deep sub-barrier fusion (possible sub-barrier hindrance) and its interplay with nuclear structure (sub-barrier resonances). Here, we show that direct measurements of the C12+C12 fusion cross section may be made into the Gamow window using an advanced particle-gamma coincidence technique. The sensitivity of this technique effectively removes ambiguities in existing measurements made with gamma ray or charged-particle detection alone. The present cross-section data span over 8 orders of magnitude and support the fusion-hindrance model at deep sub-barrier energies

    Decay spectroscopy of Cd-129

    Get PDF
    Excited states of 129^{129}In populated following the β\beta-decay of 129^{129}Cd were experimentally studied with the GRIFFIN spectrometer at the ISAC facility of TRIUMF, Canada. A 480-MeV proton beam was impinged on a uranium carbide target and 129^{129}Cd was extracted using the Ion Guide Laser Ion Source (IG-LIS). β\beta- and γ\gamma-rays following the decay of 129^{129}Cd were detected with the GRIFFIN spectrometer comprising the plastic scintillator SCEPTAR and 16 high-purity germanium (HPGe) clover-type detectors. %, along with the β\beta-particles were detected with SCEPTAR. From the β\beta-γ\gamma-γ\gamma coincidence analysis, 32 new transitions and 7 new excited states were established, expanding the previously known level scheme of 129^{129}In. The logft\log ft values deduced from the β\beta-feeding intensities suggest that some of the high-lying states were populated by the ν0g7/2π0g9/2\nu 0 g_{7/2} \rightarrow \pi 0 g_{9/2} allowed Gamow-Teller (GT) transition, which indicates that the allowed GT transition is more dominant in the 129^{129}Cd decay than previously reported. Observation of fragmented Gamow-Teller strengths is consistent with theoretical calculations.Comment: 13 pages, 9 figures, to be published in Physical Review

    Men and COVID-19: the aftermath

    Get PDF
    The global pandemic as a result of the SARS-CoV2 virus has seen over 16m people infected and over 650,000 deaths, with men at double the risk of both developing the severe form of the disease and mortality. There are both biological (sex) and socio-cultural (gender) factors, compounded by socio-economic factors and ethnicity, that impact on the aftermath of what has occurred over the short time that this novel coronavirus has been circulating the world. The potential life-long morbidity as a result of the infection and as a consequence of highly invasive critical care treatment needs to be factored into the rehabilitation of survivors. There are also many men whose lives will have been severely affected both physically and emotionally by the pandemic without ever contracting the disease, with the widespread disruption to normal existence and its impact on their social world and the economy. The implications of the closure of many healthcare services over the initial lockdown will also have both a shorter- and longer-term impact on other diseases due to missed early diagnosis and disrupted treatment regimes. Getting effective public health messages out to the population is critical and this current pandemic is demonstrating that there needs to be a more focused view on men's health behaviour. Without effective public support for preventative action the more likely the disease will continue its path unabated. This review explores the wider ramifications of the disease both for those men who have survived the disease and those that have been affected by the wider social effects of the pandemic. The pandemic should be a wake-up call for all involved in the planning and delivery of health and social care for the greater attention to the central role of sex and gender

    Shell evolution approaching the N=20 island of inversion : Structure of Mg 29

    Get PDF
    The island of inversion for neutron-rich nuclei in the vicinity of N=20 has become the testing ground par excellence for our understanding and modeling of shell evolution with isospin. In this context, the structure of the transitional nucleus Mg29 is critical. The first quantitative measurements of the single-particle structure of Mg29 are reported, using data from the d(Mg28, p γ)Mg29 reaction. Two key states carrying significant 3 (f-wave) strength were identified at 2.40±0.10 (Jπ=5/2-) and 4.28±0.04 MeV (7/2-). New state-of-the-art shell-model calculations have been performed and the predictions are compared in detail with the experimental results. While the two lowest 7/2- levels are well described, the sharing of single-particle strength disagrees with experiment for both the 3/2- and 5/2- levels and there appear to be general problems with configurations involving the p3/2 neutron orbital and core-excited components. These conclusions are supported by an analysis of the neutron occupancies in the shell-model calculations
    corecore