66 research outputs found

    Synthesis and Electronic Structure Determination of Uranium(VI) Ligand Radical Complexes

    Get PDF
       Pentagonal bipyramidal uranyl complexes of salen ligands, N,N’-bis(3-tert-butyl-(5R)-salicylidene)-1,2-phenylenediamine, in which R = tBu (1a), OMe (1b), and NMe2 (1c), were prepared and the electronic structure of the one-electron oxidized species [1a-c]+ were investigated in solution. The solid-state structures of 1a and 1b were solved by X-ray crystallography, and in the case of 1b an asymmetric UO22+ unit was found due to an intermolecular hydrogen bonding interaction. Electrochemical investigation of 1a-c by cyclic voltammetry showed that each complex exhibited at least one quasi-reversible redox process assigned to the oxidation of the phenolate moieties to phenoxyl radicals. The trend in redox potentials matches the electron-donating ability of the para-phenolate substituents. The electron paramagnetic resonance spectra of cations [1a-c]+ exhibited gav values of 1.997, 1.999, and 1.995, respectively, reflecting the ligand radical character of the oxidized forms, and in addition, spin-orbit coupling to the uranium centre. Chemical oxidation as monitored by ultraviolet-visible-near-infrared (UV-vis-NIR) spectroscopy afforded the one-electron oxidized species. Weak low energy intra-ligand charge transfer (CT) transitions were observed for [1a-c]+ indicating localization of the ligand radical to form a phenolate / phenoxyl radical species. Further analysis using density functional theory (DFT) calculations predicted a localized phenoxyl radical for [1a-c]+ with a small but significant contribution of the phenylenediamine unit to the spin density. Time-dependent DFT (TD-DFT) calculations provided further insight into the nature of the low energy transitions, predicting both phenolate to phenoxyl intervalence charge transfer (IVCT) and phenylenediamine to phenoxyl CT character. Overall, [1a-c]+ are determined to be relatively localized ligand radical complexes, in which localization is enhanced as the electron donating ability of the para-phenolate substituents is increased (NMe2 > OMe > tBu)

    Terminal uranium(V/VI) nitride activation of carbon dioxide and carbon disulfide: factors governing diverse and well-defined cleavage and redox reactions

    Get PDF
    The reactivity of terminal uranium(V/VI) nitrides with CE2 (E=O, S) is presented. Well-defined C=E cleavage followed by zero-, one-, and two-electron redox events is observed. The uranium(V) nitride [U(TrenTIPS)(N)][K(B15C5)2] (1, TrenTIPS=N(CH2CH2NSiiPr3)3; B15C5=benzo-15-crown-5) reacts with CO2 to give [U(TrenTIPS)(O)(NCO)][K(B15C5)2] (3), whereas the uranium(VI) nitride [U(TrenTIPS)(N)] (2) reacts with CO2 to give isolable [U(TrenTIPS)(O)(NCO)] (4); complex 4 rapidly decomposes to known [U(TrenTIPS)(O)] (5) with concomitant formation of N2 and CO proposed, with the latter trapped as a vanadocene adduct. In contrast, 1 reacts with CS2 to give [U(TrenTIPS)(Îș2-CS3)][K(B15C5)2] (6), 2, and [K(B15C5)2][NCS] (7), whereas 2 reacts with CS2 to give [U(TrenTIPS)(NCS)] (8) and “S”, with the latter trapped as Ph3PS. Calculated reaction profiles reveal outer-sphere reactivity for uranium(V) but inner-sphere mechanisms for uranium(VI); despite the wide divergence of products the initial activation of CE2 follows mechanistically related pathways, providing insight into the factors of uranium oxidation state, chalcogen, and NCE groups that govern the subsequent divergent redox reactions that include common one-electron reactions and a less-common two-electron redox event. Caution, we suggest, is warranted when utilising CS2 as a reactivity surrogate for CO2

    The macrophage in HIV-1 infection: From activation to deactivation?

    Get PDF
    Macrophages play a crucial role in innate and adaptative immunity in response to microorganisms and are an important cellular target during HIV-1 infection. Recently, the heterogeneity of the macrophage population has been highlighted. Classically activated or type 1 macrophages (M1) induced in particular by IFN-Îł display a pro-inflammatory profile. The alternatively activated or type 2 macrophages (M2) induced by Th-2 cytokines, such as IL-4 and IL-13 express anti-inflammatory and tissue repair properties. Finally IL-10 has been described as the prototypic cytokine involved in the deactivation of macrophages (dM). Since the capacity of macrophages to support productive HIV-1 infection is known to be modulated by cytokines, this review shows how modulation of macrophage activation by cytokines impacts the capacity to support productive HIV-1 infection. Based on the activation status of macrophages we propose a model starting with M1 classically activated macrophages with accelerated formation of viral reservoirs in a context of Th1 and proinflammatory cytokines. Then IL-4/IL-13 alternatively activated M2 macrophages will enter into the game that will stop the expansion of the HIV-1 reservoir. Finally IL-10 deactivation of macrophages will lead to immune failure observed at the very late stages of the HIV-1 disease

    Native prey and invasive predator patterns of foraging activity : the case of the yellow-legged hornet predation at European honeybee hives

    Get PDF
    Contrary to native predators, which have co-evolved with their prey, alien predators often benefit from native prey naivete. Vespa velutina, a honeybee predator originating from Eastern China, was introduced into France just before 2004. The present study, based on video recordings of two beehives at an early stage of the invasion process, intends to analyse the alien hornet hunting behaviour on the native prey, Apis mellifera, and to understand the interaction between the activity of the predator and the prey during the day and the season. Chasing hornets spent most of their time hovering facing the hive, to catch flying honeybees returning to the hive. The predation pressure increased during the season confirming previous study based on predator trapping. The number of honeybee captures showed a maximum peak for an intermediate number of V. velutina, unrelated to honeybee activity, suggesting the occurrence of competition between hornets. The number of honeybees caught increased during midday hours while the number of hornets did not vary, suggesting an increase in their efficacy. These results suggest that the impact of V. velutina on honeybees is limited by its own biology and behaviour and did not match the pattern of activity of its prey. Also, it could have been advantageous during the invasion, limiting resource depletion and thus favouring colonisation. This lack of synchronization may also be beneficial for honeybee colonies by giving them an opportunity to increase their activity when the hornets are less effective
    • 

    corecore