621 research outputs found
A surprising method for polarising antiprotons
We propose a method for polarising antiprotons in a storage ring by means of
a polarised positron beam moving parallel to the antiprotons. If the relative
velocity is adjusted to the cross section for spin-flip is
as large as about barn as shown by new QED-calculations of
the triple spin-cross sections. Two possibilities for providing a positron
source with sufficient flux density are presented. A polarised positron beam
with a polarisation of 0.70 and a flux density of approximately /(mm s) appears to be feasible by means of a radioactive C
dc-source. A more involved proposal is the production of polarised positrons by
pair production with circularly polarised photons. It yields a polarisation of
0.76 and requires the injection into a small storage ring. Such polariser
sources can be used at low (100 MeV) as well as at high (1 GeV) energy storage
rings providing a time of about one hour for polarisation build-up of about
antiprotons to a polarisation of about 0.18. A comparison with other
proposals show a gain in the figure-of-merit by a factor of about ten.Comment: 13 pages, 8 figures; v2: minor language and signification corrections
v3: (14 pages, 12 figures) major error, nonapplicable polarisation transfer
cross sections replaced by the mandatory spin-flip cross section
Technical enhancement of TMA sites for data safety & cost efficiency
Current developments of deep sea data telemetry system (capsules, inductive, acoustics) will be reviewed and further developments performed. Technical enhancement will be demonstrated at selected sites and with different platforms (e.g. Myrtle-X lander
Recommended from our members
Three-Electrode Study of Electrochemical Ionomer Degradation Relevant to Anion-Exchange-Membrane Water Electrolyzers
Among existing water electrolysis (WE) technologies, anion-exchange-membrane water electrolyzers (AEMWEs) show promise for low-cost operation enabled by the basic solid-polymer electrolyte used to conduct hydroxide ions. The basic environment within the electrolyzer, in principle, allows the use of non-platinum-group metal catalysts and less-expensive cell components compared to acidic-membrane systems. Nevertheless, AEMWEs are still underdeveloped, and the degradation and failure modes are not well understood. To improve performance and durability, supporting electrolytes such as KOH and K2CO3 are often added to the water feed. The effect of the anion interactions with the ionomer membrane (particularly other than OH-), however, remains poorly understood. We studied three commercial anion-exchange ionomers (Aemion, Sustainion, and PiperION) during oxygen evolution (OER) at oxidizing potentials in several supporting electrolytes and characterized their chemical stability with surface-sensitive techniques. We analyzed factors including the ionomer conductivity, redox potential, and pH tolerance to determine what governs ionomer stability during OER. Specifically, we discovered that the oxidation of Aemion at the electrode surface is favored in the presence of CO32-/HCO3- anions perhaps due to the poor conductivity of that ionomer in the carbonate/bicarbonate form. Sustainion tends to lose its charge-carrying groups as a result of electrochemical degradation favored in basic electrolytes. PiperION seems to be similarly negatively affected by a pH drop and low carbonate/bicarbonate conductivity under the applied oxidizing potential. The insight into the interactions of the supporting electrolyte anions with the ionomer/membrane helps shed light on some of the degradation pathways possible inside of the AEMWE and enables the informed design of materials for water electrolysis
On-orbit Operations and Offline Data Processing of CALET onboard the ISS
The CALorimetric Electron Telescope (CALET), launched for installation on the
International Space Station (ISS) in August, 2015, has been accumulating
scientific data since October, 2015. CALET is intended to perform long-duration
observations of high-energy cosmic rays onboard the ISS. CALET directly
measures the cosmic-ray electron spectrum in the energy range of 1 GeV to 20
TeV with a 2% energy resolution above 30 GeV. In addition, the instrument can
measure the spectrum of gamma rays well into the TeV range, and the spectra of
protons and nuclei up to a PeV.
In order to operate the CALET onboard ISS, JAXA Ground Support Equipment
(JAXA-GSE) and the Waseda CALET Operations Center (WCOC) have been established.
Scientific operations using CALET are planned at WCOC, taking into account
orbital variations of geomagnetic rigidity cutoff. Scheduled command sequences
are used to control the CALET observation modes on orbit. Calibration data
acquisition by, for example, recording pedestal and penetrating particle
events, a low-energy electron trigger mode operating at high geomagnetic
latitude, a low-energy gamma-ray trigger mode operating at low geomagnetic
latitude, and an ultra heavy trigger mode, are scheduled around the ISS orbit
while maintaining maximum exposure to high-energy electrons and other
high-energy shower events by always having the high-energy trigger mode active.
The WCOC also prepares and distributes CALET flight data to collaborators in
Italy and the United States.
As of August 31, 2017, the total observation time is 689 days with a live
time fraction of the total time of approximately 84%. Nearly 450 million events
are collected with a high-energy (E>10 GeV) trigger. By combining all operation
modes with the excellent-quality on-orbit data collected thus far, it is
expected that a five-year observation period will provide a wealth of new and
interesting results.Comment: 11 pages, 7 figures, published online 27 February 201
Search for GeV Gamma-ray Counterparts of Gravitational Wave Events by CALET
We present results on searches for gamma-ray counterparts of the LIGO/Virgo
gravitational-wave events using CALorimetric Electron Telescope ({\sl CALET})
observations. The main instrument of {\sl CALET}, CALorimeter (CAL), observes
gamma-rays from GeV up to 10 TeV with a field of view of nearly 2 sr.
In addition, the {\sl CALET} gamma-ray burst monitor (CGBM) views 3 sr
and sr of the sky in the 7 keV -- 1 MeV and the 40 keV -- 20 MeV
bands, respectively, by using two different crystal scintillators. The {\sl
CALET} observations on the International Space Station started in October 2015,
and here we report analyses of events associated with the following
gravitational wave events: GW151226, GW170104, GW170608, GW170814 and GW170817.
Although only upper limits on gamma-ray emission are obtained, they correspond
to a luminosity of erg s in the GeV energy band
depending on the distance and the assumed time duration of each event, which is
approximately the order of luminosity of typical short gamma-ray bursts. This
implies there will be a favorable opportunity to detect high-energy gamma-ray
emission in further observations if additional gravitational wave events with
favorable geometry will occur within our field-of-view. We also show the
sensitivity of {\sl CALET} for gamma-ray transient events which is the order of
~erg\,cm\,s for an observation of 100~s duration.Comment: 12 pages, 8 figures, 1 table. Accepted for publication in
Astrophysical Journa
Channeling of Positrons through Periodically Bent Crystals: on Feasibility of Crystalline Undulator and Gamma-Laser
The electromagnetic radiation generated by ultra-relativistic positrons
channelling in a crystalline undulator is discussed. The crystalline undulator
is a crystal whose planes are bent periodically with the amplitude much larger
than the interplanar spacing. Various conditions and criteria to be fulfilled
for the crystalline undulator operation are established. Different methods of
the crystal bending are described. We present the results of numeric
calculations of spectral distributions of the spontaneous radiation emitted in
the crystalline undulator and discuss the possibility to create the stimulated
emission in such a system in analogy with the free electron laser. A careful
literature survey covering the formulation of all essential ideas in this field
is given. Our investigation shows that the proposed mechanism provides an
efficient source for high energy photons, which is worth to study
experimentally.Comment: 52 pages, MikTeX, 14 figure
Performance of the First ANTARES Detector Line
In this paper we report on the data recorded with the first Antares detector
line. The line was deployed on the 14th of February 2006 and was connected to
the readout two weeks later. Environmental data for one and a half years of
running are shown. Measurements of atmospheric muons from data taken from
selected runs during the first six months of operation are presented.
Performance figures in terms of time residuals and angular resolution are
given. Finally the angular distribution of atmospheric muons is presented and
from this the depth profile of the muon intensity is derived.Comment: 14 pages, 9 figure
- âŠ