22 research outputs found

    A Machine Learning Approach for Mortality Prediction in COVID-19 Pneumonia: Development and Evaluation of the Piacenza Score

    Get PDF
    Background: Several models have been developed to predict mortality in patients with COVID-19 pneumonia, but only a few have demonstrated enough discriminatory capacity. Machine learning algorithms represent a novel approach for the data-driven prediction of clinical outcomes with advantages over statistical modeling.Objective: We aimed to develop a machine learning-based score-the Piacenza score-for 30-day mortality prediction in patients with COVID-19 pneumonia.Methods: The study comprised 852 patients with COVID-19 pneumonia, admitted to the Guglielmo da Saliceto Hospital in Italy from February to November 2020. Patients' medical history, demographics, and clinical data were collected using an electronic health record. The overall patient data set was randomly split into derivation and test cohorts. The score was obtained through the naive Bayes classifier and externally validated on 86 patients admitted to Centro Cardiologico Monzino (Italy) in February 2020. Using a forward-search algorithm, 6 features were identified: age, mean corpuscular hemoglobin concentration, PaO2/FiO(2) ratio, temperature, previous stroke, and gender. The Brier index was used to evaluate the ability of the machine learning model to stratify and predict the observed outcomes. A user-friendly website was designed and developed to enable fast and easy use of the tool by physicians. Regarding the customization properties of the Piacenza score, we added a tailored version of the algorithm to the website, which enables an optimized computation of the mortality risk score for a patient when some of the variables used by the Piacenza score are not available. In this case, the naive Bayes classifier is retrained over the same derivation cohort but using a different set of patient characteristics. We also compared the Piacenza score with the 4C score and with a naive Bayes algorithm with 14 features chosen a priori.Results: The Piacenza score exhibited an area under the receiver operating characteristic curve (AUC) of 0.78 (95% CI 0.74-0.84, Brier score=0.19) in the internal validation cohort and 0.79 (95% CI 0.68-0.89, Brier score=0.16) in the external validation cohort, showing a comparable accuracy with respect to the 4C score and to the naive Bayes model with a priori chosen features; this achieved an AUC of 0.78 (95% CI 0.73-0.83, Brier score=0.26) and 0.80 (95% CI 0.75-0.86, Brier score=0.17), respectively.Conclusions: Our findings demonstrated that a customizable machine learning-based score with a purely data-driven selection of features is feasible and effective for the prediction of mortality among patients with COVID-19 pneumonia

    First analysis of the size-frequency distribution of boulders ge 7m on comet 67P

    Get PDF
    Images of the surface of comet 67P Churyumov-Gerasimenko taken by the OSIRIS camera on board the Rosetta spacecraft have been used to study the statistical distribution and morphological properties of both cluster and isolated roundish structures ('boulders') scattered all over the surface. We used NAC images taken on Aug 5-6, 2014, at a distance between 131.45 - 109.76 km, with a spatial resolution ranging from 2.44 - 2.03 m/px (Fig. 1). Such data cover a full rotation of 67P, providing the first ever full size frequency distribution coverage of boulders ≄ 7m visible on a cometary illuminated side. Boulders are ubiquitous on the head, neck, and body of 67P \citep{thomas15}. The initial count of 4,976 boulders was reduced to 3,546 for statistical purposes taking into consideration only those with a diameter larger than 7 m \citep{pajola15}

    The Comet Interceptor Mission

    Get PDF
    Here we describe the novel, multi-point Comet Interceptor mission. It is dedicated to the exploration of a little-processed long-period comet, possibly entering the inner Solar System for the first time, or to encounter an interstellar object originating at another star. The objectives of the mission are to address the following questions: What are the surface composition, shape, morphology, and structure of the target object? What is the composition of the gas and dust in the coma, its connection to the nucleus, and the nature of its interaction with the solar wind? The mission was proposed to the European Space Agency in 2018, and formally adopted by the agency in June 2022, for launch in 2029 together with the Ariel mission. Comet Interceptor will take advantage of the opportunity presented by ESA’s F-Class call for fast, flexible, low-cost missions to which it was proposed. The call required a launch to a halo orbit around the Sun-Earth L2 point. The mission can take advantage of this placement to wait for the discovery of a suitable comet reachable with its minimum ΔV capability of 600 ms−1. Comet Interceptor will be unique in encountering and studying, at a nominal closest approach distance of 1000 km, a comet that represents a near-pristine sample of material from the formation of the Solar System. It will also add a capability that no previous cometary mission has had, which is to deploy two sub-probes – B1, provided by the Japanese space agency, JAXA, and B2 – that will follow different trajectories through the coma. While the main probe passes at a nominal 1000 km distance, probes B1 and B2 will follow different chords through the coma at distances of 850 km and 400 km, respectively. The result will be unique, simultaneous, spatially resolved information of the 3-dimensional properties of the target comet and its interaction with the space environment. We present the mission’s science background leading to these objectives, as well as an overview of the scientific instruments, mission design, and schedule

    An approach to use FB-AODV with Android

    No full text
    This work talks about an attempt to create a Mobile Ad-hoc NETwork with Android smartphones. We used FBaodv to manage the networks and some bash script to share informations within the networks. MANET was tested by simple applications to view local neighbors, to send sms over the networks

    Analysis of Steins Cratering History Using the OSIRIS/ROSETTA Images

    No full text
    We present a preliminary analysis of the craters on the asteroid Steins images obtained by OSIRIS, the imaging system on board the ESA mission ROSETTA, during the flyby on 5th September 2008. Steins has been observed at the closest distance of about 800 km achieving the maximum resolution of 80 m/px. Several small-to-medium craters have been identified, in addition to few very large craters: one of them is nearly 2 km across. The images show also the superposition of small craters on larger ones, and some structure that may represent the remnant of old degraded craters. A structure of chain-like craters has also been identified. All the craters have been counted in order to get the cumulative number per square km. Then we have applied our model to estimate the collisional age of Steins using the most recent modeling of the current population of the Main Belt asteroids (Bottke et al., 2005) to define the impactor flux. The model uses the scaling law of Holsapple and Housen (2007) to determine the crater diameter as a function of the impactor radius

    Human, All Too Human? An All-Around Appraisal of the “Artificial Intelligence Revolution” in Medical Imaging

    No full text
    none16noArtificial intelligence (AI) has seen dramatic growth over the past decade, evolving from a niche super specialty computer application into a powerful tool which has revolutionized many areas of our professional and daily lives, and the potential of which seems to be still largely untapped. The field of medicine and medical imaging, as one of its various specialties, has gained considerable benefit from AI, including improved diagnostic accuracy and the possibility of predicting individual patient outcomes and options of more personalized treatment. It should be noted that this process can actively support the ongoing development of advanced, highly specific treatment strategies (e.g., target therapies for cancer patients) while enabling faster workflow and more efficient use of healthcare resources. The potential advantages of AI over conventional methods have made it attractive for physicians and other healthcare stakeholders, raising much interest in both the research and the industry communities. However, the fast development of AI has unveiled its potential for disrupting the work of healthcare professionals, spawning concerns among radiologists that, in the future, AI may outperform them, thus damaging their reputations or putting their jobs at risk. Furthermore, this development has raised relevant psychological, ethical, and medico-legal issues which need to be addressed for AI to be considered fully capable of patient management. The aim of this review is to provide a brief, hopefully exhaustive, overview of the state of the art of AI systems regarding medical imaging, with a special focus on how AI and the entire healthcare environment should be prepared to accomplish the goal of a more advanced human-centered world.openFrancesca Coppola, Lorenzo Faggioni, Michela Gabelloni, Fabrizio De Vietro, Vincenzo Mendola, Arrigo Cattabriga, Maria Adriana Cocozza, Giulio Vara, Alberto Piccinino, Silvia Lo Monaco, Luigi Vincenzo Pastore, Margherita Mottola, Silvia Malavasi, Alessandro Bevilacqua, Emanuele Neri, Rita GolfieriFrancesca Coppola, Lorenzo Faggioni, Michela Gabelloni, Fabrizio De Vietro, Vincenzo Mendola, Arrigo Cattabriga, Maria Adriana Cocozza, Giulio Vara, Alberto Piccinino, Silvia Lo Monaco, Luigi Vincenzo Pastore, Margherita Mottola, Silvia Malavasi, Alessandro Bevilacqua, Emanuele Neri, Rita Golfier

    Photometry of dust grains of comet 67P and connection with nucleus regions

    Get PDF
    International audienceMultiple pairs of high-resolution images of the dust coma of comet 67P/Churyumov-Gerasimenko have been collected by OSIRIS onboard Rosetta allowing extraction and analysis of dust grain tracks. We developed a quasi automatic method to recognize and to extract dust tracks in the Osiris images providing size, FWHM and photometric data. The dust tracks characterized by a low signal-to-noise ratio were checked manually. We performed the photometric analysis of 70 dust grain tracks observed on two different Narrow Angle Camera images in the two filters F24 and F28, centered at lambda = 480.7 nm and at lambda = 743.7 nm, respectively, deriving the color and the reddening of each one. We then extracted several images of the nucleus observed with the same filters and with the same phase angle to be compared with the dust grain reddening. Most of the dust grain reddening is very similar to the nucleus values, confirming they come from the surface or subsurface layer. The histogram of the dust grain reddening has a secondary peak at negative values and shows some grains with values higher than the nucleus, suggesting a different composition from the surface grains. One hypothesis comes from the negative values point at the presence of hydrated minerals in the comet

    A three-dimensional modelling of the layered structure of comet 67P/Churyumov-Gerasimenko

    No full text
    International audienceWe provide a three-dimensional model of the inner layered structure of comet 67P based on the hypothesis of an extended layering independently wrapping each lobe. A large set of terrace orientations was collected on the latest shape model and then used as a proxy for the local orientation of the surfaces of discontinuity which defines the layers. We modelled the terraces as a family of concentric ellipsoidal shells with fixed axis ratios, producing a model that is completely defined by just eight free parameters. Each lobe of 67P has been modelled independently, and the two sets of parameters have been estimated by means of non-linear optimization of the measured terrace orientations. The proposed model is able to predict the orientation of terraces, the elongation of cliffs, the linear traces observed in the Wosret and Hathor regions and the peculiar alignment of boulder-like features which has been observed in the Hapi region, which appears to be related to the inner layering of the big lobe. Our analysis allowed us to identify a plane of junction between the two lobes, further confirming the independent nature of the lobes. Our layering models differ from the best-fitting topographic ellipsoids of the surface, demonstrating that the terraces are aligned to an internal structure of discontinuities, which is unevenly exposed on the surface, suggesting a complex history of localized material removal from the nucleus
    corecore