79 research outputs found

    Measuring galaxy [OII] emission line doublet with future ground-based wide-field spectroscopic surveys

    Get PDF
    The next generation of wide-field spectroscopic redshift surveys will map the large-scale galaxy distribution in the redshift range 0.7< z<2 to measure baryonic acoustic oscillations (BAO). The primary optical signature used in this redshift range comes from the [OII] emission line doublet, which provides a unique redshift identification that can minimize confusion with other single emission lines. To derive the required spectrograph resolution for these redshift surveys, we simulate observations of the [OII] (3727,3729) doublet for various instrument resolutions, and line velocities. We foresee two strategies about the choice of the resolution for future spectrographs for BAO surveys. For bright [OII] emitter surveys ([OII] flux ~30.10^{-17} erg /cm2/s like SDSS-IV/eBOSS), a resolution of R~3300 allows the separation of 90 percent of the doublets. The impact of the sky lines on the completeness in redshift is less than 6 percent. For faint [OII] emitter surveys ([OII] flux ~10.10^{-17} erg /cm2/s like DESi), the detection improves continuously with resolution, so we recommend the highest possible resolution, the limit being given by the number of pixels (4k by 4k) on the detector and the number of spectroscopic channels (2 or 3).Comment: 5 pages, 1 figur

    The M31 Globular Cluster Luminosity Function

    Full text link
    We combine our compilation of photometry of M31 globular cluster and probable cluster candidates with new near-infrared photometry for 30 objects. Using these data we determine the globular cluster luminosity function (GCLF) in multiple filters for the M31 halo clusters. We find a GCLF peak and dispersion of V_0^0=16.84 +/-0.11, sigma_t=0.93 +/- 0.13 (Gaussian sigma = 1.20 +/- 0.14), consistent with previous results. The halo GCLF peak colors (e.g., B^0_0 - V^0_0) are consistent with the average cluster colors. We also measure V-band GCLF parameters for several other subsamples of the M31 globular cluster population. The inner third of the clusters have a GCLF peak significantly brigher than that of the outer clusters (delta V =~ 0.5mag). Dividing the sample by both galacticentric distance and metallicity, we find that the GCLF also varies with metallicity, as the metal-poor clusters are on average 0.36 mag fainter than the metal-rich clusters. Our modeling of the catalog selection effects suggests that they are not the cause of the measured differences, but a more complete, less-contaminated M31 cluster catalog is required for confirmation. Our results imply that dynamical destruction is not the only factor causing variation in the M31 GCLF: metallicity, age, and cluster initial mass function may also be important.Comment: AJ, in press. 36 pages, including 7 figure

    Correlated Supernova Systematics and Ground Based Surveys

    Full text link
    Supernova distances provide a direct probe of cosmic acceleration, constraining dark energy. This leverage increases with survey redshift depth at a rate bounded by the systematic uncertainties. We investigate the impact of a wavelength-dependent, global correlation model of systematics in comparison to the standard local-redshift correlation model. This can arise from subclass uncertainties as features in the supernova spectrum redshift out of the observer photometric filters or spectral range. We explore the impact of such a systematic on ground-based supernova surveys such as Dark Energy Survey and LSST, finding distinctive implications. Extending the wavelength sensitivity to 1.05 microns through "extreme red" CCDs can improve the dark energy figure of merit by up to a factor 2.Comment: 8 pages, 5 figure

    Stochastic bias of colour-selected BAO tracers by joint clustering-weak lensing analysis

    Full text link
    The baryon acoustic oscillation (BAO) feature in the two-point correlation function of galaxies supplies a standard ruler to probe the expansion history of the Universe. We study here several galaxy selection schemes, aiming at building an emission-line galaxy (ELG) sample in the redshift range 0.6<z<1.70.6<z<1.7, that would be suitable for future BAO studies, providing a highly biased galaxy sample. We analyse the angular galaxy clustering of galaxy selections at the redshifts 0.5, 0.7, 0.8, 1 and 1.2 and we combine this analysis with a halo occupation distribution (HOD) model to derive the properties of the haloes these galaxies inhabit, in particular the galaxy bias on large scales. We also perform a weak lensing analysis (aperture statistics) to extract the galaxy bias and the cross-correlation coefficient and compare to the HOD prediction. We apply this analysis on a data set composed of the photometry of the deep co-addition on Sloan Digital Sky Survey (SDSS) Stripe 82 (225 deg2^2), of Canda-France-Hawai Telescope/Stripe 82 deep \emph{i}-band weak lensing survey and of the {\it Wide-Field Infrared Survey Explorer}infrared photometric band W1. The analysis on the SDSS-III/constant mass galaxies selection at z=0.5z=0.5 is in agreement with previous studies on the tracer, moreover we measure its cross-correlation coefficient r=1.16±0.35r=1.16\pm0.35. For the higher redshift bins, we confirm the trends that the brightest galaxy populations selected are strongly biased (b>1.5b>1.5), but we are limited by current data sets depth to derive precise values of the galaxy bias. A survey using such tracers of the mass field will guarantee a high significance detection of the BAO.Comment: 17 pages, 15 figures, submitted to MNRA

    Calibrating the Star Formation Rate at z=1 from Optical Data

    Full text link
    We present a star-formation rate calibration based on optical data that is consistent with average observed rates in both the red and blue galaxy populations at z~1. The motivation for this study is to calculate SFRs for DEEP2 Redshift Survey galaxies in the 0.7<z<1.4 redshift range, but our results are generally applicable to similar optically-selected galaxy samples without requiring UV or IR data. Using SFRs fit from UV/optical SEDs in the AEGIS survey, we explore the behavior of restframe B-band magnitude, observed [OII] luminosity, and restframe (U-B) color with SED-fit SFR for both red sequence and blue cloud galaxies. We find that a SFR calibration can be calculated for all z~1 DEEP2 galaxies using a simultaneous fit in M_B and restframe colors with residual errors that are within the SFR measurement error. The resulting SFR calibration produces fit residual errors of 0.3 dex RMS scatter for the full color-independent sample with minimal correlated residual error in L[OII] or stellar mass. We then compare the calibrated z~1 SFRs to two diagnostics that use L[OII] as a tracer in local galaxies and correct for dust extinction at intermediate redshifts through either galaxy B-band luminosity or stellar mass. We find that a L[OII] - M_B SFR calibration commonly used in the literature agrees well with our calculated SFRs after correcting for the average B-band luminosity evolution in L* galaxies. However, we find better agreement with a local L[OII]-based SFR calibration that includes stellar mass to correct for reddening effects, indicating that stellar mass is a better tracer of dust extinction for all galaxy types and less affected by systematic evolution than galaxy luminosity from z=1 to the current epoch.Comment: 16 pages, 15 figures, emulateapj format, to be submitted to Ap

    Comparison of proton irradiated P-channel and N-channel CCDs

    Get PDF
    Charge transfer inefficiency and dark current effects are compared for e2v technologies plc. p-channel and n-channel CCDs, both irradiated with protons. The p-channel devices, prior to their irradiation, exhibited twice the dark current and considerable worse charge transfer inefficiency (CTI) than a typical n-channel. The radiation induced increase in dark current was found to be comparable with n-channel CCDs, and its temperature dependence suggest the divacancy is the dominant source of thermally generated dark current pre and post irradiation. The factor of improvement in tolerance to radiation induced CTI varied by between 15 and 25 for serial CTI and 8 and 3 for parallel CTI, between −70 °C and −110 °C respectively

    Reducing Zero-point Systematics in Dark Energy Supernova Experiments

    Get PDF
    We study the effect of filter zero-point uncertainties on future supernova dark energy missions. Fitting for calibration parameters using simultaneous analysis of all Type Ia supernova standard candles achieves a significant improvement over more traditional fit methods. This conclusion is robust under diverse experimental configurations (number of observed supernovae, maximum survey redshift, inclusion of additional systematics). This approach to supernova fitting considerably eases otherwise stringent mission calibration requirements. As an example we simulate a space-based mission based on the proposed JDEM satellite; however the method and conclusions are general and valid for any future supernova dark energy mission, ground or space-based.Comment: 30 pages,8 figures, 5 table, one reference added, submitted to Astroparticle Physic

    Weak Lensing from Space I: Instrumentation and Survey Strategy

    Full text link
    A wide field space-based imaging telescope is necessary to fully exploit the technique of observing dark matter via weak gravitational lensing. This first paper in a three part series outlines the survey strategies and relevant instrumental parameters for such a mission. As a concrete example of hardware design, we consider the proposed Supernova/Acceleration Probe (SNAP). Using SNAP engineering models, we quantify the major contributions to this telescope's Point Spread Function (PSF). These PSF contributions are relevant to any similar wide field space telescope. We further show that the PSF of SNAP or a similar telescope will be smaller than current ground-based PSFs, and more isotropic and stable over time than the PSF of the Hubble Space Telescope. We outline survey strategies for two different regimes - a ``wide'' 300 square degree survey and a ``deep'' 15 square degree survey that will accomplish various weak lensing goals including statistical studies and dark matter mapping.Comment: 25 pages, 8 figures, 1 table, replaced with Published Versio
    corecore