320 research outputs found

    The ABC Effect in Double-Pionic Nuclear Fusion and a pn Resonance as its Possible Origin

    Full text link
    The ABC effect -- a long-standing puzzle in double-pionic fusion -- has been reexamined by the first exclusive and kinematically complete measurements of solid statistics for the fusion reactions pn→dπ0π0pn \to d\pi^0\pi^0, pd→3pd \to ^3Heππ\pi\pi and dd→4dd \to ^4Heππ\pi\pi using the WASA detector, first at CELSIUS and recently at COSY -- the latter with a statistics increased by another two orders of magnitude. In all cases we observe a huge low-mass enhancement in the ππ\pi\pi-invariant mass accompanied by a pronounced ΔΔ\Delta\Delta excitation. For the most basic fusion reaction, the pn→dπ0π0pn \to d\pi^0\pi^0 reaction, we observe in addition a very pronounced resonance-like energy dependence in the total cross section with a maximum 90 MeV below the ΔΔ\Delta\Delta mass and a width of only 50 MeV, which is five times smaller than expected from a conventional tt-channel ΔΔ\Delta\Delta excitation. This reveals the ABC effect to be the consequence of a s-channel resonance with the formfactor of this dibaryonic state being reflected in the low-mass enhancement of the ππ\pi\pi-invariant mass. From the fusion reactions to 3^3He and 4^4He we learn that this resonance is robust enough to survive even in nuclei.Comment: conference proceedings PANIC 0

    Inclusive 2H(3He,t) reaction at 2 GeV

    Full text link
    The inclusive 2H(3He,t) reaction has been studied at 2 GeV for energy transfers up to 500 MeV and scattering angles from 0.25 up to 4 degrees. Data are well reproduced by a model based on a coupled-channel approach for describing the NN and N Delta systems. The effect of final state interaction is important in the low energy part of the spectra. In the delta region, the cross-section is very sensitive to the effects of Delta-N interaction and Delta N - NN process. The latter has also a large influence well below the pion threshold. The calculation underestimates the experimental cross-section between the quasi-elastic and the delta peaks; this is possibly due to projectile excitation or purely mesonic exchange currents.Comment: 9 pages, 9 figures, accepted for publication in EPJ

    High resistance towards herbivore-induced habitat change in a high Arctic arthropod community

    Get PDF
    Mammal herbivores may exert strong impacts on plant communities, and are often key drivers of vegetation composition and diversity. We tested whether such mammal-induced changes to a high Arctic plant community are reflected in the structure of other trophic levels. Specifically, we tested whether substantial vegetation changes following the experimental exclusion of muskoxen (Ovibos moschatus) altered the composition of the arthropod community and the predator-prey interactions therein. Overall, we found no impact of muskox exclusion on the arthropod community: the diversity and abundance of both arthropod predators (spiders) and of their prey were unaffected by muskox presence, and so was the qualitative and quantitative structure of predator-prey interactions. Hence, high Arctic arthropod communities seem highly resistant towards even large biotic changes in their habitat, which we attribute to the high connectance in the food web

    Limited dietary overlap amongst resident Arctic herbivores in winter: complementary insights from complementary methods

    Get PDF
    Snow may prevent Arctic herbivores from accessing their forage in winter, forcing them to aggregate in the few patches with limited snow. In High Arctic Greenland, Arctic hare and rock ptarmigan often forage in muskox feeding craters. We therefore hypothesized that due to limited availability of forage, the dietary niches of these resident herbivores overlap considerably, and that the overlap increases as winter progresses. To test this, we analyzed fecal samples collected in early and late winter. We used molecular analysis to identify the plant taxa consumed, and stable isotope ratios of carbon and nitrogen to quantify the dietary niche breadth and dietary overlap. The plant taxa found indicated only limited dietary differentiation between the herbivores. As expected, dietary niches exhibited a strong contraction from early to late winter, especially for rock ptarmigan. This may indicate increasing reliance on particular plant resources as winter progresses. In early winter, the diet of rock ptarmigan overlapped slightly with that of muskox and Arctic hare. Contrary to our expectations, no inter-specific dietary niche overlap was observed in late winter. This overall pattern was specifically revealed by combined analysis of molecular data and stable isotope contents. Hence, despite foraging in the same areas and generally feeding on the same plant taxa, the quantitative dietary overlap between the three herbivores was limited. This may be attributable to species-specific consumption rates of plant taxa. Yet, Arctic hare and rock ptarmigan may benefit from muskox opening up the snow pack, thereby allowing them to access the plants.</p

    Exclusive Measurements of pd→3Heππpd\to ^3He \pi\pi : the ABCABC Effect Revisited

    Get PDF
    Exclusive measurements of the reactions pd→pd\to 3Heπ+π−^3He \pi^+ \pi^- and pd→pd\to 3Heπ0π0^3He \pi^0\pi^0 have been carried out at Tp=0.895T_p=0.895 GeV at the CELSIUS storage ring using the WASA detector. The π+π−\pi^+\pi^- channel evidences a pronounced enhancement at low invariant ππ\pi\pi masses - as anticipated from previous inclusive measurements of the ABC effect. This enhancement is seen to be even much larger in the isoscalar π0π0\pi^0\pi^0 channel. The differential distributions prove this enhancement to be of scalar-isoscalar nature. ΔΔ\Delta\Delta calculations give a good description of the data, if a boundstate condition is imposed for the intermediate ΔΔ\Delta\Delta system.Comment: extended version, 8 pages, 7 figures, theoretical model calculations adde

    Location of studies and evidence of effects of herbivory on Arctic vegetation : a systematic map

    Get PDF
    Background: Herbivores modify the structure and function of tundra ecosystems. Understanding their impacts is necessary to assess the responses of these ecosystems to ongoing environmental changes. However, the effects of herbivores on plants and ecosystem structure and function vary across the Arctic. Strong spatial variation in herbivore effects implies that the results of individual studies on herbivory depend on local conditions, i.e., their ecological context. An important first step in assessing whether generalizable conclusions can be produced is to identify the existing studies and assess how well they cover the underlying environmental conditions across the Arctic. This systematic map aims to identify the ecological contexts in which herbivore impacts on vegetation have been studied in the Arctic. Specifically, the primary question of the systematic map was: "What evidence exists on the effects of herbivores on Arctic vegetation?". Methods: We used a published systematic map protocol to identify studies addressing the effects of herbivores on Arctic vegetation. We conducted searches for relevant literature in online databases, search engines and specialist websites. Literature was screened to identify eligible studies, defined as reporting primary data on herbivore impacts on Arctic plants and plant communities. We extracted information on variables that describe the ecological context of the studies, from the studies themselves and from geospatial data. We synthesized the findings narratively and created a Shiny App where the coded data are searchable and variables can be visually explored. Review findings We identified 309 relevant articles with 662 studies (representing different ecological contexts or datasets within the same article). These studies addressed vertebrate herbivory seven times more often than invertebrate herbivory. Geographically, the largest cluster of studies was in Northern Fennoscandia. Warmer and wetter parts of the Arctic had the largest representation, as did coastal areas and areas where the increase in temperature has been moderate. In contrast, studies spanned the full range of ecological context variables describing Arctic vertebrate herbivore diversity and human population density and impact. Conclusions: The current evidence base might not be sufficient to understand the effects of herbivores on Arctic vegetation throughout the region, as we identified clear biases in the distribution of herbivore studies in the Arctic and a limited evidence base on invertebrate herbivory. In particular, the overrepresentation of studies in areas with moderate increases in temperature prevents robust generalizations about the effects of herbivores under different climatic scenarios.Peer reviewe
    • …
    corecore