326 research outputs found

    The c.-292C>T promoter polymorphism increases reticulocyte-type 15-lipoxygenase-1 activity and could be atheroprotective

    Get PDF
    Background: Reticulocyte-type 15-lipoxygenase-1 (ALOX15) has anti-inflammatory and inflammatory effects and is implicated in the development of asthma, arthritis and atherosclerosis. Previously, we screened the human ALOX15 gene for variations because genetic variability in ALOX15 might influence these diseases. We found a C>T substitution at position c.-292 in the ALOX15 promoter that created a novel binding site for the transcription factor SPI1 and increased ALOX15 mRNA levels in monocytes from c.-292CT heterozygous volunteers. Methods: To test whether the higher mRNA levels led to higher ALOX15 activity, we performed an activity assay and measured the arachidonic acid metabolite 15(S)-hydroxy-eicosatetraenoic acid [15(S)-HETE] by HPLC analysis. To test whether this polymorphism was associated with coronary artery disease (CAD), we investigated its association in a case-control study involving 498 Caucasians. Results: The c.-292C>T polymorphism was associated with higher enzyme activity in heterozygous carriers. Intriguingly, this polymorphism also showed a tendency to be protective against atherosclerosis. Conclusions: These results suggest that increased ALOX15 activity may attenuate inflammation, which could be caused by an increase in 15(S)-HETE and eventually by its metabolites, the lipoxins. Clin Chem Lab Med 2007;45:487-9

    Damaged Trees Caused by Selective Thinning in Two Tropical Mountain Rain Forest Types in Southern Ecuador

    Get PDF
    The proportion of damaged trees and the type caused by the selective thinning can have serious impacts on the ecological and economic sustainability of forests. So far, the damage caused by thinning operations in montane tropical forests is unknown. In this study, we try to quantify the damages caused by selective thinning in two types of humid montane forests in southern Ecuador. For this, we installed 52 permanent plots of 50 m x 50 m in two force types. In the valley forest (VF), we extracted an average basal area of 2.75 m² ha–1, in the ridge forest (RF) an average basal area of 0.8 m² ha–1 was extracted. For each felled tree, we counted and categorized the damage separated by large (>20cm DBH) and small ( 20 cm. The extracted basal area significantly influences the proportion of (TD) trees with DBH < 20 cm. In general, the proportion of temporarily damaged (TD) trees is greater than the proportion of permanently damaged (PD) trees in both types of forest. Considering only the heavily damaged trees we can conclude that the damage in total is acceptable

    Compositional diversity of rehabilitated tropical lands supports multiple ecosystem services and buffers uncertainties

    Get PDF
    High landscape diversity is assumed to increase the number and level of ecosystem services. However, the interactions between ecosystem service provision, disturbance and landscape composition are poorly understood. Here we present a novel approach to include uncertainty in the optimization of land allocation for improving the provision of multiple ecosystem services. We refer to the rehabilitation of abandoned agricultural lands in Ecuador including two types of both afforestation and pasture rehabilitation, together with a succession option. Our results show that high compositional landscape diversity supports multiple ecosystem services (multifunction effect). This implicitly provides a buffer against uncertainty. Our work shows that active integration of uncertainty is only important when optimizing single or highly correlated ecosystem services and that the multifunction effect on landscape diversity is stronger than the uncertainty effect. This is an important insight to support a land-use planning based on ecosystem services

    Compositional diversity of rehabilitated tropical lands supports multiple ecosystem services and buffers uncertainties

    Get PDF
    High landscape diversity is assumed to increase the number and level of ecosystem services. However, the interactions between ecosystem service provision, disturbance and landscape composition are poorly understood. Here we present a novel approach to include uncertainty in the optimization of land allocation for improving the provision of multiple ecosystem services. We refer to the rehabilitation of abandoned agricultural lands in Ecuador including two types of both afforestation and pasture rehabilitation, together with a succession option. Our results show that high compositional landscape diversity supports multiple ecosystem services (multifunction effect). This implicitly provides a buffer against uncertainty. Our work shows that active integration of uncertainty is only important when optimizing single or highly correlated ecosystem services and that the multifunction effect on landscape diversity is stronger than the uncertainty effect. This is an important insight to support a land-use planning based on ecosystem services

    Comparative study of GC-MS characterization, antioxidant activity and hyaluronidase inhibition of different species of Lavandula and Thymus essential oils

    Get PDF
    The chemical compositions of essential oils of Lavandula angustifolia, Lavandula latifolia, Lavandula hybrida cultivar Grosso and cultivar Super, Thymus zygis with high proportions of thymol and linalool and Thymus hyemalis, from Murcia country (Spain), were studied in relative (%), absolute (mM) and chiral concentrations by GC/MS. Hyaluronidase inhibition and antioxidant activities of the essential oils were evaluated using ABTS(center dot+), DPPH center dot, ORAC, chelating power, hydroxyl radical, nitric oxide, TBARS and reducing power assays. Linalool and linalyl acetate were the most abundant components in the Lavandula genus whereas thymol, linalool and 1,8-cineole were the most abundant molecules in the respective Thymus species. Chiral determination of the main components showed (+)-enantiomers like terpinen-4-ol, beta-pinene, borneol and a-terpineol and (-)-enantiomers like linalool, linalyl acetate and camphene in Lavandula sp. In the case of Thymus sp. (+)-enantiomers like a-pinene, limonene, terpinen-4-ol and a-terpineol and (-)-enantiomers like borneol were found. Essential oils containing thymol were found especially powerful in all assays but chelating power, ORAC and hydroxyl radical scavenging assays. The capacity for inhibiting hyaluronidase showed that T. zygis with a high proportion of thymol was the most effective inhibitor. Essential oils containing thymol and linalool/linalyl acetate have a potential use as antioxidant agents. Thymol shows strong inhibition of hyaluronidase. Copyright (C) 2015 John Wiley & Sons, Ltd

    Accounting for multiple ecosystem services in a simulation of land‐use decisions: Does it reduce tropical deforestation?

    Get PDF
    Conversion of tropical forests is among the primary causes of global environmental change. The loss of their important environmental services has prompted calls to integrate ecosystem services (ES) in addition to socio-economic objectives in decisionmaking. To test the effect of accounting for both ES and socio-economic objectives in land-use decisions, we develop a new dynamic approach to model deforestation scenarios for tropical mountain forests. We integrate multi-objective optimization of land allocation with an innovative approach to consider uncertainty spaces for each objective. These uncertainty spaces account for potential variability among decisionmakers, who may have different expectations about the future. When optimizing only socio-economic objectives, the model continues the past trend in deforestation (1975–2015) in the projected land-use allocation (2015–2070). Based on indicators for biomass production, carbon storage, climate and water regulation, and soil quality, we show that considering multiple ES in addition to the socio-economic objectives has heterogeneous effects on land-use allocation. It saves some natural forest if the natural forest share is below 38%, and can stop deforestation once the natural forest share drops below 10%. For landscapes with high shares of forest (38%–80% in our study), accounting for multiple ES under high uncertainty of their indicators may, however, accelerate deforestation. For such multifunctional landscapes, two main effects prevail: (a) accelerated expansion of diversified non-natural areas to elevate the levels of the indicators and (b) increased landscape diversification to maintain multiple ES, reducing the proportion of natural forest. Only when accounting for vascular plant species richness as an explicit objective in the optimization, deforestation was consistently reduced. Aiming for multifunctional landscapes may therefore conflict with the aim of reducing deforestation, which we can quantify here for the first time. Our findings are relevant for identifying types of landscapes where this conflict may arise and to better align respective policies

    Sustainable and resource efficient intensivation of crop production – Perspectives of agro-ecosystem researchPolicy paper of the DFG Senate Commission on Agroecosystem Research

    Get PDF
    Mit dem vorliegenden Grundsatzpapier zeigt die Senatskommission für Agrarökosystemforschung Perspektiven für die Grundlagenforschung zur nachhaltigen Erhöhung der Kulturpflanzenproduktion auf.Agrarsysteme stehen im Spannungsfeld zwischen steigendem Bedarf an landwirtschaftlichen Produkten, der Verknappung der Ressourcen, dem Verlust der Biodiversität und dem Klimawandel. Die für das Jahr 2050 prognostizierte notwendige Ertragssteigerung zur Sicherstellung des Bedarfs an Nahrungsmitteln kann, ohne die Belastbarkeitsgrenzen ökologischer Systeme zu überschreiten, nur durch wissenschaftlichen Fortschritt bewältigt werden (Abb. 1), der eine nachhaltige und ressourcen­effiziente Steigerung der Agrarproduktion ermöglicht (FAO, 2011; Dobermann und Nelson, 2013). Die nachhaltige Intensivierung stellt die Agrarwissenschaften vor neue Aufgaben, die weit über ihre klassischen Grenzen hinausgehen.Die Senatskommission plädiert daher für eine Erweiterung der agrarwissenschaftlichen Perspektive. Die meist auf einzelne Feldfrüchte bezogene Bewertung der Rela­tion zwischen Input und Ertrag muss ergänzt werden um die Optionen, die sich aus der räumlichen und zeitlichen Diversifikation der Produktionssysteme unter Einbeziehung der standörtlichen Eigenschaften, des Landschaftskontextes sowie des Klimawandels ergeben. Um Ökosystemleistungen einzubeziehen, müssen Produktionsstrategien entwickelt werden, die sich auf ganze Landschaften und Regionen richten und auch entsprechende sozio­öko­no­mische und agrarpolitische Rahmenbedingungen berücksichtigen.Vor diesem Hintergrund schlägt die Senatskommission drei interdisziplinäre Forschungsschwerpunkte zur ressourceneffizienten Erhöhung der Flächenproduktivität vor:(1) Ausnutzung des Potentials von Kulturpflanzen zur umweltschonenden Ertragssteigerung im Kontext öko­systemarer Bedingungen.(2) Nachhaltige Steigerung der Pflanzenproduktion im Landschaftskontext.(3) Ökonomische, gesellschaftliche und politische Dimensionen der Ertragssteigerung von Kulturpflanzen. DOI: 10.5073/JfK.2014.07.01, https://doi.org/10.5073/JfK.2014.07.01With its policy paper the Senate Commission on Agro-ecosystem Research of the Deutsche Forschungsgemeinschaft (DFG) summarizes potential benefits of basic research for the sustainable intensification of crop production. Agro-ecosystems critically contribute to fulfilling the need for increasing food and fiber production, diminishing resource depletion as well as counteracting biodiversity loss and climate change. Yield demands that are needed to ensure the food supply predicted for the year 2050 can only be achieved by scientific progress that allows the intensive yet environmentally friendly production of plant biomass (Figure 1), (FAO, 2011; Dobermann und Nelson, 2013; Ray et al., 2013). Sustainable intensification requires a scientific realignment that allows for broadening the scope of agricultural research. The productivity of farming systems should be evaluated with regard to their efficiency (input-output relation). In addition, the spatial and temporal variability of these systems must be considered by addressing local conditions, the landscape context and climate change. With respect to ecosystem services, new production strategies must be developed that take all aspects of landscape and regional complexity as well as socio-economic conditions and agricultural policy into account.Against this background, the Senate Commission on Agro-ecosystem Research proposes three priority areas of interdisciplinary research on resource efficient intensification of crop production:(1) Exploiting the biological potential of the individual crop plants for an environmentally friendly intensification in an ecosystem approach(2) Exploring sustainable intensification of crop production within a landscape context(3) Taking full account of the economic, social and political dimensions of sustainable intensification of crop production DOI: 10.5073/JfK.2014.07.01, https://doi.org/10.5073/JfK.2014.07.0
    corecore