538 research outputs found

    Thermodynamics of non-local materials: extra fluxes and internal powers

    Full text link
    The most usual formulation of the Laws of Thermodynamics turns out to be suitable for local or simple materials, while for non-local systems there are two different ways: either modify this usual formulation by introducing suitable extra fluxes or express the Laws of Thermodynamics in terms of internal powers directly, as we propose in this paper. The first choice is subject to the criticism that the vector fluxes must be introduced a posteriori in order to obtain the compatibility with the Laws of Thermodynamics. On the contrary, the formulation in terms of internal powers is more general, because it is a priori defined on the basis of the constitutive equations. Besides it allows to highlight, without ambiguity, the contribution of the internal powers in the variation of the thermodynamic potentials. Finally, in this paper, we consider some examples of non-local materials and derive the proper expressions of their internal powers from the power balance laws.Comment: 16 pages, in press on Continuum Mechanics and Thermodynamic

    Projecting the incidence and costs of major cardiovascular and kidney complications of type 2 diabetes with widespread SGLT2i and GLP-1 RA use: a cost-effectiveness analysis.

    Get PDF
    Aims/hypothesis Whether sodium-glucose co-transporter 2 inhibitors (SGLT2is) or glucagon-like peptide-1 receptor agonists (GLP-1 RAs) are cost-effective based solely on their cardiovascular and kidney benefits is unknown. We projected the health and economic outcomes due to myocardial infarction (MI), stroke, heart failure (HF) and end-stage kidney disease (ESKD) among people with type 2 diabetes, with and without CVD, under scenarios of widespread use of these drugs. Methods We designed a microsimulation model using real-world data that captured CVD and ESKD morbidity and mortality from 2020 to 2040. The populations and transition probabilities were derived by linking the Australian Diabetes Registry (1.1 million people with type 2 diabetes) to hospital admissions databases, the National Death Index and the ESKD Registry using data from 2010 to 2019. We modelled four interventions: increase in use of SGLT2is or GLP-1 RAs to 75% of the total population with type 2 diabetes, and increase in use of SGLT2is or GLP-1 RAs to 75% of the secondary prevention population (i.e. people with type 2 diabetes and prior CVD). All interventions were compared with current use of SGLT2is (20% of the total population) and GLP-1 RAs (5% of the total population). Outcomes of interest included quality-adjusted life years (QALYs), total costs (from the Australian public healthcare perspective) and the incremental cost-effectiveness ratio (ICER). We applied 5% annual discounting for health economic outcomes. The willingness-to-pay threshold was set at AU28,000perQALYgained.ResultsThenumbersofQALYsgainedfrom2020to2040withincreasedSGLT2iandGLP1RAuseinthetotalpopulation(n=1.1millionin2020;n=1.5millionin2040)were176,446and200,932,respectively,comparedwithcurrentuse.NetcostdifferenceswereAU28,000 per QALY gained. Results The numbers of QALYs gained from 2020 to 2040 with increased SGLT2i and GLP-1 RA use in the total population (n=1.1 million in 2020; n=1.5 million in 2040) were 176,446 and 200,932, respectively, compared with current use. Net cost differences were AU4.2 billion for SGLT2is and AU20.2billionforGLP1RAs,andtheICERswereAU20.2 billion for GLP-1 RAs, and the ICERs were AU23,717 and AU100,705perQALYgained,respectively.Inthesecondarypreventionpopulation,theICERswereAU100,705 per QALY gained, respectively. In the secondary prevention population, the ICERs were AU8878 for SGLT2is and AU$79,742 for GLP-1 RAs. Conclusions/interpretation At current prices, use of SGLT2is, but not GLP-1 RAs, would be cost-effective when considering only their cardiovascular and kidney disease benefits for people with type 2 diabetes.Jedidiah I. Morton, Clara Marquina, Jonathan E. Shaw, Danny Liew, Kevan R. Polkinghorne, Zanfina Ademi, Dianna J. Maglian

    Atmospheric Heating and Wind Acceleration: Results for Cool Evolved Stars based on Proposed Processes

    Full text link
    A chromosphere is a universal attribute of stars of spectral type later than ~F5. Evolved (K and M) giants and supergiants (including the zeta Aurigae binaries) show extended and highly turbulent chromospheres, which develop into slow massive winds. The associated continuous mass loss has a significant impact on stellar evolution, and thence on the chemical evolution of galaxies. Yet despite the fundamental importance of those winds in astrophysics, the question of their origin(s) remains unsolved. What sources heat a chromosphere? What is the role of the chromosphere in the formation of stellar winds? This chapter provides a review of the observational requirements and theoretical approaches for modeling chromospheric heating and the acceleration of winds in single cool, evolved stars and in eclipsing binary stars, including physical models that have recently been proposed. It describes the successes that have been achieved so far by invoking acoustic and MHD waves to provide a physical description of plasma heating and wind acceleration, and discusses the challenges that still remain.Comment: 46 pages, 9 figures, 1 table; modified and unedited manuscript; accepted version to appear in: Giants of Eclipse, eds. E. Griffin and T. Ake (Berlin: Springer

    Mortality trends in type 1 diabetes:a multicountry analysis of six population-based cohorts

    Get PDF
    AIMS/HYPOTHESIS: Mortality has declined in people with type 1 diabetes in recent decades. We examined how the pattern of decline differs by country, age and sex, and how mortality trends in type 1 diabetes relate to trends in general population mortality. METHODS: We assembled aggregate data on all-cause mortality during the period 2000–2016 in people with type 1 diabetes aged 0–79 years from Australia, Denmark, Latvia, Scotland, Spain (Catalonia) and the USA (Kaiser Permanente Northwest). Data were obtained from administrative sources, health insurance records and registries. All-cause mortality rates in people with type 1 diabetes, and standardised mortality ratios (SMRs) comparing type 1 diabetes with the non-diabetic population, were modelled using Poisson regression, with age and calendar time as quantitative variables, describing the effects using restricted cubic splines with six knots for age and calendar time. Mortality rates were standardised to the age distribution of the aggregate population with type 1 diabetes. RESULTS: All six data sources showed a decline in age- and sex-standardised all-cause mortality rates in people with type 1 diabetes from 2000 to 2016 (or a subset thereof), with annual changes in mortality rates ranging from −2.1% (95% CI −2.8%, −1.3%) to −5.8% (95% CI −6.5%, −5.1%). All-cause mortality was higher for male individuals and for older individuals, but the rate of decline in mortality was generally unaffected by sex or age. SMR was higher in female individuals than male individuals, and appeared to peak at ages 40–70 years. SMR declined over time in Denmark, Scotland and Spain, while remaining stable in the other three data sources. CONCLUSIONS/INTERPRETATION: All-cause mortality in people with type 1 diabetes has declined in recent years in most included populations, but improvements in mortality relative to the non-diabetic population are less consistent. GRAPHICAL ABSTRACT: [Image: see text] ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1007/s00125-022-05659-9) contains peer-reviewed but unedited supplementary material, which is available to authorised users

    Global fire emissions estimates during 1997-2016

    Get PDF
    Climate, land use, and other anthropogenic and natural drivers have the potential to influence fire dynamics in many regions. To develop a mechanistic understanding of the changing role of these drivers and their impact on atmospheric composition, long-term fire records are needed that fuse information from different satellite and in situ data streams. Here we describe the fourth version of the Global Fire Emissions Database (GFED) and quantify global fire emissions patterns during 1997-2016. The modeling system, based on the Carnegie-Ames-Stanford Approach (CASA) biogeochemical model, has several modifications from the previous version and uses higher quality input datasets. Significant upgrades include (1) new burned area estimates with contributions from small fires, (2) a revised fuel consumption parameterization optimized using field observations, (3) modifications that improve the representation of fuel consumption in frequently burning landscapes, and (4) fire severity estimates that better represent continental differences in burning processes across boreal regions of North America and Eurasia. The new version has a higher spatial resolution (0.25) and uses a different set of emission factors that separately resolves trace gas and aerosol emissions from temperate and boreal forest ecosystems. Global mean carbon emissions using the burned area dataset with small fires (GFED4s) were 2.21015 grams of carbon per year (Pg Cyr-1) during 1997-2016, with a maximum in 1997 (3.0 Pg C yr-1) and minimum in 2013 (1.8 Pg C yr-1). These estimates were 11% higher than our previous estimates (GFED3) during 1997-2011, when the two datasets overlapped. This net increase was the result of a substantial increase in burned area (37 %), mostly due to the inclusion of small fires, and a modest decrease in mean fuel consumption (-19 %) to better match estimates from field studies, primarily in savannas and grasslands. For trace gas and aerosol emissions, differences between GFED4s and GFED3 were often larger due to the use of revised emission factors. If small fire burned area was excluded (GFED4 without the s for small fires), average emissions were 1.5 Pg C yr-1. The addition of small fires had the largest impact on emissions in temperate North America, Central America, Europe, and temperate Asia. This small fire layer carries substantial uncertainties; improving these estimates will require use of new burned area products derived from high-resolution satellite imagery. Our revised dataset provides an internally consistent set of burned area and emissions that may contribute to a better understanding of multi-decadal changes in fire dynamics and their impact on the Earth system. GFED data are available from http://www.globalfiredata.org

    Physics of Solar Prominences: I - Spectral Diagnostics and Non-LTE Modelling

    Full text link
    This review paper outlines background information and covers recent advances made via the analysis of spectra and images of prominence plasma and the increased sophistication of non-LTE (ie when there is a departure from Local Thermodynamic Equilibrium) radiative transfer models. We first describe the spectral inversion techniques that have been used to infer the plasma parameters important for the general properties of the prominence plasma in both its cool core and the hotter prominence-corona transition region. We also review studies devoted to the observation of bulk motions of the prominence plasma and to the determination of prominence mass. However, a simple inversion of spectroscopic data usually fails when the lines become optically thick at certain wavelengths. Therefore, complex non-LTE models become necessary. We thus present the basics of non-LTE radiative transfer theory and the associated multi-level radiative transfer problems. The main results of one- and two-dimensional models of the prominences and their fine-structures are presented. We then discuss the energy balance in various prominence models. Finally, we outline the outstanding observational and theoretical questions, and the directions for future progress in our understanding of solar prominences.Comment: 96 pages, 37 figures, Space Science Reviews. Some figures may have a better resolution in the published version. New version reflects minor changes brought after proof editin

    The biology of appetite control: Do resting metabolic rate and fat-free mass drive energy intake?

    Get PDF
    The prevailing model of homeostatic appetite control envisages two major inputs; signals from adipose tissue and from peptide hormones in the gastrointestinal tract. This model is based on the presumed major influence of adipose tissue on food intake. However, recent studies have indicated that in obese people fat-free mass (FFM) is strongly positively associated with daily energy intake and with meal size. This effect has been replicated in several independent groups varying in cultural and ethnic backgrounds, and appears to be a robust phenomenon. In contrast fat mass (FM) is weakly, or mildly negatively associated with food intake in obese people. In addition resting metabolic rate (RMR), a major component of total daily energy expenditure, is also associated with food intake. This effect has been replicated in different groups and is robust. This action is consistent with the proposal that energy requirements — reflected in RMR (and other aspects of energy expenditure) constitute a biological drive to eat. Consistent with its storage function, FM has a strong inhibitory effect on food intake in lean subjects, but this effect appears to weaken dramatically as adipose tissue increases. This formulation can account for several features of the development and maintenance of obesity and provides an alternative, and transparent, approach to the biology of appetite control

    Search for composite and exotic fermions at LEP 2

    Get PDF
    A search for unstable heavy fermions with the DELPHI detector at LEP is reported. Sequential and non-canonical leptons, as well as excited leptons and quarks, are considered. The data analysed correspond to an integrated luminosity of about 48 pb^{-1} at an e^+e^- centre-of-mass energy of 183 GeV and about 20 pb^{-1} equally shared between the centre-of-mass energies of 172 GeV and 161 GeV. The search for pair-produced new leptons establishes 95% confidence level mass limits in the region between 70 GeV/c^2 and 90 GeV/c^2, depending on the channel. The search for singly produced excited leptons and quarks establishes upper limits on the ratio of the coupling of the excited fermio
    corecore