349 research outputs found
Trophic niche overlap between native freshwater mussels (Order: Unionida) and the invasive Corbicula fluminea
Freshwater mussels (Order Unionida) are highly threatened. Interspecific competition for food sources with invasive alien species is considered to be one of the factors responsible for their decline because successful invaders are expected to have wider trophic niches and more flexible feeding strategies than their native counterparts. In this study, carbon (ÎŽ13C: 13C/12C) and nitrogen (ÎŽ15N: 15N/14N) stable isotopes were used to investigate the trophic niche overlap between the native freshwater mussel species, Anodonta anatina, Potomida littoralis, and Unio delphinus, and the invasive bivalve Corbicula fluminea living in sympatry in the Tua basin (south-west Europe). The species presenting the widest trophic niches were C. fluminea and A. anatina, which indicate that they have broader diets than U. delphinus and P. littoralis. Nonetheless, all the species assimilated microphytobenthos, sediment organic matter, and detritus derived from vascular plants, although with interspecific variability in the assimilated proportions of each source. The trophic niche of the invasive species overlapped with the trophic niche of all the native species, with the extent varying between sites and according to the species. From the three native species analysed, Potomida littoralis may be at a higher risk for competition for food with C. fluminea in the Tua basin, if food sources become limited, because this native mussel presented the narrowest trophic niche across sites and the highest probability of overlapping with the trophic niche of C. fluminea. Given the global widespread distribution of C. fluminea, the implementation of management measures devoted to the control or even eradication of this invasive alien species should be a conservation priority given its potential for competition with highly threatened native freshwater mussels.V.M. and P.C. were supported by doctoral grants SFRH/BD/108298/2015 and SFRH/BD/131814/2017, respectively, from
the Portuguese Foundation for Science and TechnologyâFCT through
POPH/FSE funds. FCT also supported M.L.L. under contract
(2020.03608.CEECIND). This study was conducted within the project
FRESHCO â Multiple implications of invasive species on Freshwater
Mussel coextinction processes, supported by FCT and COMPETE
funds (contract: PTDC/AGRFOR/1627/2014). This study was also
supported by national funds through FCT â Foundation for Science
and Technology within the scope of UIDB/04423/2020 and
UIDP/04423/2020. We thank Jacinto Cunha for providing Figure 1.info:eu-repo/semantics/publishedVersio
Darkness visible: reflections on underground ecology
1 Soil science and ecology have developed independently, making it difficult for ecologists to contribute to urgent current debates on the destruction of the global soil resource and its key role in the global carbon cycle. Soils are believed to be exceptionally biodiverse parts of ecosystems, a view confirmed by recent data from the UK Soil Biodiversity Programme at Sourhope, Scotland, where high diversity was a characteristic of small organisms, but not of larger ones. Explaining this difference requires knowledge that we currently lack about the basic biology and biogeography of micro-organisms. 2 It seems inherently plausible that the high levels of biological diversity in soil play some part in determining the ability of soils to undertake ecosystem-level processes, such as carbon and mineral cycling. However, we lack conceptual models to address this issue, and debate about the role of biodiversity in ecosystem processes has centred around the concept of functional redundancy, and has consequently been largely semantic. More precise construction of our experimental questions is needed to advance understanding. 3 These issues are well illustrated by the fungi that form arbuscular mycorrhizas, the Glomeromycota. This ancient symbiosis of plants and fungi is responsible for phosphate uptake in most land plants, and the phylum is generally held to be species-poor and non-specific, with most members readily colonizing any plant species. Molecular techniques have shown both those assumptions to be unsafe, raising questions about what factors have promoted diversification in these fungi. One source of this genetic diversity may be functional diversity. 4 Specificity of the mycorrhizal interaction between plants and fungi would have important ecosystem consequences. One example would be in the control of invasiveness in introduced plant species: surprisingly, naturalized plant species in Britain are disproportionately from mycorrhizal families, suggesting that these fungi may play a role in assisting invasion. 5 What emerges from an attempt to relate biodiversity and ecosystem processes in soil is our extraordinary ignorance about the organisms involved. There are fundamental questions that are now answerable with new techniques and sufficient will, such as how biodiverse are natural soils? Do microbes have biogeography? Are there rare or even endangered microbes
A domestic operational rating for UK homes: Concept, formulation and application
A Domestic Operational Rating (DOR) scheme is presented for assessing the energy performance of occupied dwellings. The DOR is complementary to the method used to generate the asset rating of UK dwellings: the Standard Assessment Procedure (SAP). The DOR is transparent, easy to calculate, based on readily available information, producible from daily smart meter data, calculable for any period on a rolling year basis and applicable across all UK homes.The DOR method was developed using a new primary data set collected from 114 homes as part of the DEFACTO project. All were semi-detached, gas centrally heated, privately owned and internet connected properties, located in the English Midlands. The mean daily energy demands are analysed alongside information gathered through an energy survey and household questionnaires. These data are presented and analysed for the first time in this paper.The DOR method, which is described in full, generates metrics that indicate the absolute and relative energy demands, greenhouse gas emissions and energy costs of homes. The DOR ratings for the D114 homes were stable from year to year. Comparing the DOR with homesâ asset (SAP) ratings, indicates that the SAP rating poorly reflects the inter-home variation of householdsâ actual energy demand. For the D114 homes, it was possible produce a reduced data Domestic Operational Rating, rdDOR, using the energy demands measured on only a few cold days.Although developed in the UK context, the DOR is generally applicable to national, regional or local housing stocks in which daily energy demand is metered. Potential improvements to the DOR, and the need for trials using smart meter data from diverse homes and locations, are discussed
Recommended from our members
Soft X-Ray Magnetic Imaging of Focused Ion Beam Lithographically Patterned Fe Thin Films
We illustrate the potential of modifying the magnetic behavior and structural properties of ferromagnetic thin films using focused ion beam 'direct-write' lithography. Patterns inspired by the split-ring resonators often used as components in meta-materials were defined upon 15 nm Fe films using a 30 keV Ga{sup +} focused ion beam at a dose of 2 x 10{sup 16} ions cm{sup -2}. Structural, chemical and magnetic changes to the Fe were studied using transmission soft X-ray microscopy at the ALS, Berkeley CA. X-ray absorption spectra showed a 23% reduction in the thickness of the film in the Ga irradiated areas, but no change to the chemical environment of Fe was evident. X-ray images of the magnetic reversal process show domain wall pinning around the implanted areas, resulting in an overall increase in the coercivity of the film. Transmission electron microscopy showed significant grain growth in the implanted regions
Recent experimental results in sub- and near-barrier heavy ion fusion reactions
Recent advances obtained in the field of near and sub-barrier heavy-ion
fusion reactions are reviewed. Emphasis is given to the results obtained in the
last decade, and focus will be mainly on the experimental work performed
concerning the influence of transfer channels on fusion cross sections and the
hindrance phenomenon far below the barrier. Indeed, early data of sub-barrier
fusion taught us that cross sections may strongly depend on the low-energy
collective modes of the colliding nuclei, and, possibly, on couplings to
transfer channels. The coupled-channels (CC) model has been quite successful in
the interpretation of the experimental evidences. Fusion barrier distributions
often yield the fingerprint of the relevant coupled channels. Recent results
obtained by using radioactive beams are reported. At deep sub-barrier energies,
the slope of the excitation function in a semi-logarithmic plot keeps
increasing in many cases and standard CC calculations over-predict the cross
sections. This was named a hindrance phenomenon, and its physical origin is
still a matter of debate. Recent theoretical developments suggest that this
effect, at least partially, may be a consequence of the Pauli exclusion
principle. The hindrance may have far-reaching consequences in astrophysics
where fusion of light systems determines stellar evolution during the carbon
and oxygen burning stages, and yields important information for exotic
reactions that take place in the inner crust of accreting neutron stars.Comment: 40 pages, 63 figures, review paper accepted for EPJ
New Strategies in Sport Nutrition to Increase Exercise Performance.
Despite over 50 years of research, the field of sports nutrition continues to grow at a rapid rate. Whilst the traditional research focus was one that centred on strategies to maximize competition performance, emerging data in the last decade has demonstrated how both macronutrient and micronutrient availability can play a prominent role in regulating those cell signalling pathways that modulate skeletal muscle adaptations to endurance and resistance training. Nonetheless, in the context of exercise performance, it is clear that carbohydrate (but not fat) still remains king and that carefully chosen ergogenic aids (e.g. caffeine, creatine, sodium bicarbonate, beta-alanine, nitrates) can all promote performance in the correct exercise setting. In relation to exercise training, however, it is now thought that strategic periods of reduced carbohydrate and elevated dietary protein intake may enhance training adaptations whereas high carbohydrate availability and antioxidant supplementation may actually attenuate training adaptation. Emerging evidence also suggests that vitamin D may play a regulatory role in muscle regeneration and subsequent hypertrophy following damaging forms of exercise. Finally, novel compounds (albeit largely examined in rodent models) such as epicatechins, nicotinamide riboside, resveratrol, ÎČ-hydroxy ÎČ-methylbutyrate, phosphatidic acid and ursolic acid may also promote or attenuate skeletal muscle adaptations to endurance and strength training. When taken together, it is clear that sports nutrition is very much at the heart of the Olympic motto, Citius, Altius, Fortius (faster, higher, stronger)
Association of a novel mutation in the plasmodium falciparum chloroquine resistance transporter with decreased piperaquine sensitivity
Background. Amplified copy number in the plasmepsin II/III genes within Plasmodium falciparum has been associated with decreased sensitivity to piperaquine. To examine this association and test whether additional loci might also contribute, we performed a genome-wide association study of ex vivo P. falciparum susceptibility to piperaquine. Methods. Plasmodium falciparum DNA from 183 samples collected primarily from Cambodia was genotyped at 33 716 genomewide single nucleotide polymorphisms (SNPs). Linear mixed models and random forests were used to estimate associations between parasite genotypes and piperaquine susceptibility. Candidate polymorphisms were evaluated for their association with dihydroartemisinin- piperaquine treatment outcomes in an independent dataset. Results. Single nucleotide polymorphisms on multiple chromosomes were associated with piperaquine 90% inhibitory concentrations (IC90) in a genome-wide analysis. Fine-mapping of genomic regions implicated in genome-wide analyses identified multiple SNPs in linkage disequilibrium with each other that were significantly associated with piperaquine IC90, including a novel mutation within the gene encoding the P. falciparum chloroquine resistance transporter, PfCRT. This mutation (F145I) was associated with dihydroartemisinin-piperaquine treatment failure after adjusting for the presence of amplified plasmepsin II/III, which was also associated with decreased piperaquine sensitivity. Conclusions. Our data suggest that, in addition to plasmepsin II/III copy number, other loci, including pfcrt, may also be involved in piperaquine resistance
- âŠ