623 research outputs found

    Quantifying respirable crystalline silica in the ambient air of the Hunter Valley, NSW - sorting the silica from the silicon

    Get PDF
    Crystalline forms of silica are known to cause lung damage for which there is no effective treatment. Silicon is abundant in crustal material and silicates are the single largest mineral grouping, with silica (SiO2) being the most abundant crustal compound. Media reports of high levels of silicon in particles in the air in the vicinity of Hunter Valley open-cut coal mines have caused community anxiety and concerns about potential health impacts on local populations. An extensive sampling campaign using continuous air quality monitoring and targeted collection of particles has been carried out in an area close to mining operations. It was determined that silicon as silica was present in the ambient air, although the concentrations of crystalline silica measured suggest that it should not should cause health problems even for sensitive individuals within the general population. The results of the research should inform more rigorous discussions of air quality management plans for fine particles in the Hunter Valley and aid discussions of community concerns over the potential health impacts of coal mining.© 2011-Clean Air Society of Australia & New Zealan

    The effect of experimental hyperoxia on erythrocytes’ oxygen-transport function

    Get PDF
    The aim of this study was to investigate the effect of hyperoxia, calcium ions and pH value on the composition of major phospholipids in human erythrocyte membranes and erythrocytes’ oxygen-transport function. To create a model of hyperoxia, we saturated the incubated mixture with oxygen by constant passing of oxygen–air mixture through the incubation medium. To assess the effect of elevated calcium ion concentrations, CaCl2 was added to the incubation medium. An incubation medium with different pH was used to study the effect of various pH values. Lipids were extracted from erythrocytes and chromatographic separation was carried out in a thin layer of silica gel deposited on a glass plate. The thiobarbituric acid (TBA)-active products and the content of diene conjugates (DC) in erythrocytes were determined. The oxygen-binding capacity of haemoglobin was evaluated using Raman spectroscopy. The obtained results indicated that hyperoxia causes deep changes both in the composition and character of bilayer lipids of erythrocyte membranes, which affects the functional characteristics of erythrocytes, primarily the oxygen-transport properties of erythrocyte haemoglobin. It should be noted that a combination of Ca2+ ions and change in the pH value intensify the processes associated with disruption of phospholipids’ composition. The findings indicate that the lipid phase is one of the key elements in the functioning of erythrocytes in norm as well as during development of various pathological processes

    A Protective Role for Complement C3 Protein during Pandemic 2009 H1N1 and H5N1 Influenza A Virus Infection

    Get PDF
    Highly pathogenic H5N1 influenza infections are associated with enhanced inflammatory and cytokine responses, severe lung damage, and an overall dysregulation of innate immunity. C3, a member of the complement system of serum proteins, is a major component of the innate immune and inflammatory responses. However, the role of this protein in the pathogenesis of H5N1 infection is unknown. Here we demonstrate that H5N1 influenza virus infected mice had increased levels of C5a and C3 activation byproducts as compared to mice infected with either seasonal or pandemic 2009 H1N1 influenza viruses. We hypothesized that the increased complement was associated with the enhanced disease associated with the H5N1 infection. However, studies in knockout mice demonstrated that C3 was required for protection from influenza infection, proper viral clearance, and associated with changes in cellular infiltration. These studies suggest that although the levels of complement activation may differ depending on the influenza virus subtype, complement is an important host defense mechanism

    Accuracy of magnetic resonance studies in the detection of chondral and labral lesions in femoroacetabular impingement : systematic review and meta-analysis

    Get PDF
    Background: Several types of Magnetic resonance imaging (MRI) are commonly used in imaging of femoroacetabular impingement (FAI), however till now there are no clear protocols and recommendations for each type. The aim of this meta-analysis is to detect the accuracy of conventional magnetic resonance imaging (cMRI), direct magnetic resonance arthrography (dMRA) and indirect magnetic resonance arthrography (iMRA) in the diagnosis of chondral and labral lesions in femoroacetabular impingement (FAI). Methods: A literature search was finalized on the 17th of May 2016 to collect all studies identifying the accuracy of cMRI, dMRA and iMRA in diagnosing chondral and labral lesions associated with FAI using surgical results (arthroscopic or open) as a reference test. Pooled sensitivity and specificity with 95% confidence intervals using a random-effects meta-analysis for MRI, dMRA and iMRA were calculated also area under receiver operating characteristic (ROC) curve (AUC) was retrieved whenever possible where AUC is equivocal to diagnostic accuracy. Results: The search yielded 192 publications which were reviewed according inclusion and exclusion criteria then 21 studies fulfilled the eligibility criteria for the qualitative analysis with a total number of 828 cases, lastly 12 studies were included in the quantitative meta-analysis. Meta-analysis showed that as regard labral lesions the pooled sensitivity, specificity and AUC for cMRI were 0.864, 0.833 and 0.88 and for dMRA were 0.91, 0.58 and 0.92. While in chondral lesions the pooled sensitivity, specificity and AUC for cMRI were 0.76, 0.72 and 0.75 and for dMRA were 0.75, 0.79 and 0.83, while for iMRA were sensitivity of 0.722 and specificity of 0.917. Conclusions: The present meta-analysis showed that the diagnostic test accuracy was superior for dMRA when compared with cMRI for detection of labral and chondral lesions. The diagnostic test accuracy was superior for labral lesions when compared with chondral lesions in both cMRI and dMRA. Promising results are obtained concerning iMRA but further studies still needed to fully assess its diagnostic accuracy

    Children at danger: injury fatalities among children in San Diego County

    Get PDF
    External causes of death are important in the pediatric population worldwide. We performed an analysis of all injury-fatalities in children between ages zero and 17 years, between January 2000 and December 2006, in San Diego County, California, United States of America. Information was obtained from the County of San Diego Medical Examiner’s database. External causes were selected and grouped by intent and mechanism. Demographics, location of death and relation between the injury mechanism and time of death were described. There were 884 medico-legal examinations, of which 480 deaths were due to external causes. There majority were males (328, 68.3%) and whites (190, 39.6%). The most prevalent mechanism of injury leading to death was road traffic accidents (40.2%), followed by asphyxia (22.7%) and penetrating trauma (17.7%). Unintentional injuries occurred in 65.8% and intentional injuries, including homicide and suicide, occurred in 24.2 and 9.4%, respectively. Death occurred at the scene in 196 cases (40.9%). Most deaths occurred in highways (35.3%) and at home (28%). One hundred forty-six patients (30.4%) died in the first 24 h. Seven percent died 1 week after the initial injury. Among the cases that died at the scene, 48.3% were motor vehicle accidents, 20.9% were victims of firearms, 6.5% died from poisoning, 5% from hanging, and 4% from drowning. External causes remain an important cause of death in children in San Diego County. Specific strategies to decrease road-traffic accidents and homicides must be developed and implemented to reduce the burden of injury-related deaths in children

    Stages of development and injury patterns in the early years: a population-based analysis

    Get PDF
    BACKGROUND: In Canada, there are many formal public health programs under development that aim to prevent injuries in the early years (e.g. 0–6). There are paradoxically no population-based studies that have examined patterns of injury by developmental stage among these young children. This represents a gap in the Canadian biomedical literature. The current population-based analysis explores external causes and consequences of injuries experienced by young children who present to the emergency department for assessment and treatment. This provides objective evidence about prevention priorities to be considered in anticipatory counseling and public health planning. METHODS: Four complete years of data (1999–2002; n = 5876 cases) were reviewed from the Kingston sites of the Canadian Hospitals Injury Reporting and Prevention Program (CHIRPP), an ongoing injury surveillance initiative. Epidemiological analyses were used to characterize injury patterns within and across age groups (0–6 years) that corresponded to normative developmental stages. RESULTS: The average annual rate of emergency department-attended childhood injury was 107 per 1000 (95% CI 91–123), with boys experiencing higher annual rates of injury than girls (122 vs. 91 per 1000; p < 0.05). External causes of injury changed substantially by developmental stage. This lead to the identification of four prevention priorities surrounding 1) the optimization of supervision; 2) limiting access to hazards; 3) protection from heights; and 4) anticipation of risks. CONCLUSION: This population-based injury surveillance analysis provides a strong evidence-base to inform and enhance anticipatory counseling and other public health efforts aimed at the prevention of childhood injury during the early years

    Ambient temperature does not affect fuelling rate in absence of digestive constraints in long-distance migrant shorebird fuelling up in captivity

    Get PDF
    Pre-flight fuelling rates in free-living red knots Calidris canutus, a specialized long-distance migrating shorebird species, are positively correlated with latitude and negatively with temperature. The single published hypothesis to explain these relationships is the heat load hypothesis that states that in warm climates red knots may overheat during fuelling. To limit endogenous heat production (measurable as basal metabolic rate BMR), birds would minimize the growth of digestive organs at a time they need. This hypothesis makes the implicit assumption that BMR is mainly driven by digestive organ size variation during pre-flight fuelling. To test the validity of this assumption, we fed captive knots with trout pellet food, a diet previously shown to quickly lead to atrophied digestive organs, during a fuelling episode. Birds were exposed to two thermal treatments (6 and 24°C) previously shown to generate different fuelling rates in knots. We made two predictions. First, easily digested trout pellet food rather than hard-shelled prey removes the heat contribution of the gut and would therefore eliminate an ambient temperature effect on fuelling rate. Second, if digestive organs were the main contributors to variations in BMR but did not change in size during fuelling, we would expect no or little change in BMR in birds fed ad libitum with trout pellets. We show that cold-acclimated birds maintained higher body mass and food intake (8 and 51%) than warm-acclimated birds. Air temperature had no effect on fuelling rate, timing of fuelling, timing of peak body mass or BMR. During fuelling, average body mass increased by 32% while average BMR increased by 15% at peak of mass and 26% by the end of the experiment. Our results show that the small digestive organs characteristic of a trout pellet diet did not prevent BMR from increasing during premigratory fuelling. Our results are not consistent with the heat load hypothesis as currently formulated

    Convection and Retro-Convection Enhanced Delivery: Some Theoretical Considerations Related to Drug Targeting

    Get PDF
    Delivery of drugs and macromolecules into the brain is a challenging problem, due in part to the blood–brain barrier. In this article, we focus on the possibilities and limitations of two infusion techniques devised to bypass the blood–brain barrier: convection enhanced delivery (CED) and retro-convection enhanced delivery (R-CED). CED infuses fluid directly into the interstitial space of brain or tumor, whereas R-CED removes fluid from the interstitial space, which results in the transfer of drugs from the vascular compartment into the brain or tumor. Both techniques have shown promising results for the delivery of drugs into large volumes of tissue. Theoretical approaches of varying complexity have been developed to better understand and predict brain interstitial pressures and drug distribution for these techniques. These theoretical models of flow and diffusion can only be solved explicitly in simple geometries, and spherical symmetry is usually assumed for CED, while axial symmetry has been assumed for R-CED. This perspective summarizes features of these models and provides physical arguments and numerical simulations to support the notion that spherical symmetry is a reasonable approximation for modeling CED and R-CED. We also explore the potential of multi-catheter arrays for delivering and compartmentalizing drugs using CED and R-CED
    corecore