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Modelling mammalian energetics: the
heterothermy problem
Danielle L. Levesque1*, Julia Nowack2 and Clare Stawski3

Abstract

Global climate change is expected to have strong effects on the world’s flora and fauna. As a result, there has been

a recent increase in the number of meta-analyses and mechanistic models that attempt to predict potential

responses of mammals to changing climates. Many models that seek to explain the effects of environmental

temperatures on mammalian energetics and survival assume a constant body temperature. However, despite

generally being regarded as strict homeotherms, mammals demonstrate a large degree of daily variability in body

temperature, as well as the ability to reduce metabolic costs either by entering torpor, or by increasing body

temperatures at high ambient temperatures. Often, changes in body temperature variability are unpredictable, and

happen in response to immediate changes in resource abundance or temperature. In this review we provide an

overview of variability and unpredictability found in body temperatures of extant mammals, identify potential blind

spots in the current literature, and discuss options for incorporating variability into predictive mechanistic models.
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Background
Global climate change has provided a sense of urgency to

the importance of understanding the interactions between

organisms and environmental temperatures. As we seek to

improve the accuracy of predicting organismal responses to

changes in climate, emphasis is being placed on mechanis-

tic models that rely on an in-depth understanding of the

thermoregulatory physiology and energetics of a species

[1–6]. To date, however, the bulk of these models have

been built and tested on ectothermic organisms [7–9],

while research on endotherms has lagged behind [10]. This

is partly due to deficiencies in understanding the mecha-

nisms of the relationship between environmental tempera-

tures and energy metabolism in endotherms [8, 11–13].

With a few notable exceptions (eg. [14]), ectotherms

predominantly rely on external sources of heat production

and therefore have a relatively consistent, and thus predict-

able, relationship between ambient temperature (Ta) and

body temperature (Tb) [9, 15, 16]. By contrast, endotherms

can generate heat using metabolism and as such Tb is

generally independent of Ta [17].

From its conception, the comparative study of endo-

thermic thermoregulation has been based on the

assumption that Tb is maintained at a constant and ele-

vated level [7, 18]. One of the most common ways to

quantify the relationship between Tb and Ta in mam-

mals, and in endotherms in general, is the Scholander-

Irving model [18]. Also called thermal profiles, the

Scholander-Irving model requires measuring resting

metabolic rate (preferably from fasted, non-reproductive

individuals, during their rest-phase) over a series of

environmental temperatures to identify the range of Tas

over which metabolic rate remains minimal, referred to

as the thermoneutral zone (TNZ) [18]. At temperatures

below the lower critical limit of the TNZ, thermal

conductance (the rate at which heat is lost from the

body, and the inverse of insulation) is at a minimum and

energetically costly means of heat production (primarily

shivering and non-shivering thermogenesis) are used to

maintain Tb. Similarly, as temperatures increase above

the upper critical limit, where thermal conductance is

maximised, metabolism increases as energetically costly

means of evaporative cooling (panting and sweating) are

employed to maintain a stable Tb [16].

Existing mechanistic models have incorporated the

Scholander-Irving model, and its assumptions, into a set
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of predictive equations used to calculate the costs of

thermoregulation under various environmental condi-

tions [13, 19–21]. However, these models present a

somewhat simplistic version of mammalian energetics in

relation to climate. Often, it is assumed that the animal

is actively defending a set Tb, and therefore the models

do not take into account the potential effects of variable

Tb (but see [22], for a notable exception). Strict homeo-

thermy (a constant, often elevated Tb) is not the norm

and, as we will demonstrate in this review, many endo-

therms vary their Tb considerably. While some species

only show slight daily changes, with higher Tb during

activity than at rest, others employ larger decreases in

Tb during the rest phase [23–27], or thermoconform,

which is accompanied by a decrease in metabolism, by

either reducing Tb, (torpor, [28–30]) or increasing Tb

(hyperthermia, reviewed in [31]). When environmental

temperatures rise above Tb, evaporative cooling is often

the only means of maintaining a stable Tb. To conserve

water and avoid dehydration, some endotherms employ

facultative hyperthermia (also referred to thermocon-

forming or heat storage) at high Ta and increase their Tb

to sublethal temperatures [31–33]. Increases in Tb

reduces both the energetic and water costs of cooling

mechanisms [32, 34, 35].

Variable Tb is widespread in mammals, and both

habitat and evolutionary history have a large influence

on the thermoregulatory characteristics of endotherms

[10, 29, 36]. Energy usage in relation to climate is further

affected by phylogeny, activity level, microclimate selec-

tion, reproductive status, and energy availability [13, 21,

37–40]. Due to fundamental differences in thermo-

regulation between mammals and birds, we will focus

predominantly on mammals in this review (but see

[32, 35, 41] for a discussion on birds). The complex-

ities of predicting metabolism, or even Tb, in relation

to differences in Ta affect the accuracy of predictive mech-

anistic models. In this review we seek to provide an

overview of the variability of thermoregulatory patterns of

extant mammals, demonstrate how this variability can

complicate predictive mechanistic models, and outline

some potential avenues for improvement.

Daily variability in mammalian Tb
Many of the existing models that seek to explain species

distributions or responses of endothermic animals to

climate change are based on the assumption that endo-

therms maintain a high, relatively stable Tb throughout a

variety of habitats and climatic conditions [18, 42, 43].

Although, when compared with ectothermic species, en-

dotherms generally have significantly reduced variability

in Tb, many species show marked differences between

active-phase and rest-phase Tb (Fig. 1) [39, 44, 45]. Mean

normothermic Tb of eutherian mammals lies between 36

and 38 °C (range 30.5–40.7 °C) [46], whereas marsupials

and monotremes are generally considered to have lower

Tbs (mean 35.3 °C, range 30.8–37.4 °C) [46–48]. While

some species, such as the golden hamster (Mesocricetus

auratus) [49] or the swamp rat (Rattus lutreolus; Fig. 1a)

only decrease their Tb 2–3 °C during normothermic

resting, others, such as treeshrews (Tupaia sp.), show

more pronounced 24 h amplitudes in Tb (Fig. 1b) [45].

Marsupials, generally have larger daily Tb amplitudes,

and Tb can vary from between 32 and 34 °C during

normothermic resting, to above 40 °C during activity,

this despite their average Tbs being listed at around 35 °

C (Fig. 1c) [46, 50, 51]. Basoendotherms (sensu [36])

such as tenrecs (Fig. 1d) and echidnas show the highest

level of variability with rest-phase Tb closely following Ta

during most times of the year [52–56].

The cost of endothermy, usually measured via metab-

olism, varies greatly depending on a number of factors

including body size, habitat, resource availability,

climatic conditions, and activity patterns [57–59]. A

strictly nocturnal activity pattern is the ancestral condi-

tion in mammals, and is efficient in warm climates, as it

allows animals to save both water and energy [55, 60,

61]. This is especially true for small mammals with low

normorthermic Tbs (~32–35 °C), as a relatively high Tb

is maintained passively during the day-time rest-phase,

and activity can offset most of the potential thermo-

regulatory costs at night [38, 55, 61]. Conversely, in

colder climates where most small-bodied species rest in

thermally insulated burrows, diurnal activity can reduce

overall energy expenditure by lowering the need for

thermogenesis during the active period [13, 62]. The

relative energetic costs and benefits of a nocturnal or

diurnal activity pattern have so far mostly been discussed

in single species studies, or in hypotheses about the

evolution of endothermy [40, 61, 63–65]. Unfortunately,

nocturnal and diurnal species, as well as those that do

not fit clearly in either category, are usually lumped

together in meta-analyses despite facing vastly different

environmental conditions.

Daily amplitude changes in Tb are not solely the result

of differences in activity, but appear to be under some

level of circadian control, persisting even during

continuous rest [39, 66]. Interestingly, while differences

in resting metabolic rates between the active-phase and

rest-phase were commonly measured in older studies

[67, 68], the recent trend toward focusing on the import-

ance of measuring basal metabolism has meant that the

energetics of resting during the active-phase is largely

ignored. Basal metabolism is measured under a set of

restrictive, and often ecologically irrelevant conditions;

the animals must be post-absorptive, non-reproductive

and not growing [57, 69]. For species with pronounced,

Ta-dependent, decreases in Tb during normothermic
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rest, measuring resting metabolism during the rest-

phase only could grossly underestimate the total baseline

energy and water budgets. Pronounced normothermic

decreases in rest-phase Tb have received considerable

attention in the avian literature [41, 70, 71], where

decreases in Tb of >5 °C are common, but have been

largely ignored in mammals [16].

A major factor that can be overlooked when relying

on simplistic mechanistic models is the potential for

phenotypic plasticity [6, 72]. Individuals of one species,

or even of one population, can respond differently to an

environmental challenge often depending on the condi-

tion of the individual. The daily amplitude of Tb is not a

fixed trait, and can change based on various external

factors such as water and energy availability, or competi-

tion [25, 73–75]. Camels (Camelus dromedarius) for

example maintain a near stable Tb with only little Tb

variation (≤2 °C) and use evaporative cooling when

water is available, but increase daily amplitudes in Tb to

more than 6 °C to conserve water when water stressed

[34]. Similarly, Arabian oryx (Oryx leucoryx) show a

higher amplitude in daily Tb during warm dry periods

than during periods where water was readily available,

which is attributed to low water availability [6]. Flexible

increases in Tb amplitudes by thermoconforming are

also employed by small desert mammals in response to

high Ta during the active phase [33]. Some bats in the

Australian arid-zone are known to tolerate Ta up to 48 °

C, with corresponding skin temperatures up to 45.8 °C

[76]. In general, however, our capacity to model mam-

malian responses to high Ta is hindered by a general lack

of understanding of upper limits in Ta tolerance and

how flexible they are [2, 8, 12, 77]. We have been much

better at collecting lower limits of the TNZ than upper

(204 versus 93) [78]. Specifically, while increases in Tb at

high Ta have been shown to reduce the energetic costs

and increase the efficiency of evaporative cooling in

birds and some small desert mammals [32, 33, 79, 80],

the interplay between water loss, Tb and Ta at the upper

limits of the TNZ are largely unknown in mammals.

Additionally, very little has been done to equate upper

limits measured in the lab to conditions experienced by

the animals under natural conditions (but see [42, 81]).

In general, endotherms with flexible control over nor-

mothermic Tb (i.e. thermolabile species) can maximize

energy and water use efficiency in response to unpredict-

able conditions [7, 33, 72, 82]. An extreme example can

be found in basoendotherms. In these species, the

thermoneutral zone (TNZ) can be difficult to distinguish

as Tb often closely tracks Ta, which also blurs the lines

between normothermy and torpor [63, 83–85]. What

these basoendotherms demonstrate, is that by allowing

Fig. 1 Sample body temperature traces (solid lines) of a single free-ranging individual from several mammal species over a period of 6 days. Also

shown are ambient temperature traces (dotted lines) and the nocturnal period is represented by the grey bars and daytime by the white bars.

The mammals represented are: (a) an Australian diurnal homeotherm with small daily amplitudes in Tb (Rattus lutreolus, Order: Rodentia, Stawski,

Körtner, Nowack and Geiser unpublished data); (b) a diurnal homeotherm from Borneo with large daily Tb amplitude (Tupaia tana, Order:

Scandentia, Levesque, Tuen and Lovegrove unpublished data); (c) an Australian nocturnal daily heterotherm shown with a torpor bout, low

resting Tb, and high active Tb (Antechinus stuartii, Order: Dasyuromorphia, Stawski, Körtner, Nowack and Geiser unpublished data); and (d) a

nocturnal basoendotherm from Madagascar (Setifer setosus, Order: Afrosoricida, data from [55])
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Tb to decrease along with Ta they reduce the Tb – Ta

gradient, which allows for lower rates of heat loss as well

as a widening of the range of Ta over which minimum

rates of metabolism are measured. Such flexible thermo-

regulation usually corresponds with a parallel ability to

be active over a larger range of Tbs [55, 86–89] and is

seen to a lesser degree in other endothermic species with

high thermolability, but requires more study [7, 77, 90,

91] (Levesque, Lovegrove and Tuen unpublished data).

Thermolability, and by extension the characteristics of

the TNZ, is not fixed seasonally, however. For example,

the reddish-gray mouse lemur (Microcebus griseorufus)

not only hibernates during the winter period, but also

increases the breadth of their normothermic TNZ

during the colder period of the year [92]. In this species

the lower critical temperature of the TNZ decreases by

7.5 °C from summer to winter, which allows the species

to keep its energy demands during normothermia

constant despite colder Tas during winter [92]. This is a

relatively common phenomenon in non-hibernating

mammals, but most studies focus on change in

insulation rather than change in Tb as an energy saving

mechanism [93–95]. A large body of work exists asses-

sing the evolution of thermal flexibility in ectotherms

(reviewed by [15]), but similar approaches have yet to be

applied systematically to endotherms [10, 11].

Seasonality and unpredictability of mammalian Tb
In addition to daily changes in Tb, many mammalian

species show changes in their Tb between seasons. The

most extreme example are the so called ‘heterothermic’

mammals [29] which can temporarily abandon normo-

thermia and reduce Tb and metabolic rate in a state of

torpor. Definitions of torpor, and therefore hetero-

thermy, vary throughout the literature. Although most

agree that torpor occurs when rest-phase decreases in

Tb are large enough for metabolism to drop below basal

levels, the distinction between the two states can

sometimes be unclear [52, 91, 96]. In practice, however,

torpor is often defined using arbitrary Tb cut-offs which

can underestimate energy saved by Tb reductions above

the torpor cut-off Tb (see [91], for an in-depth discus-

sion). Similar to the vast differences in the daily Tb am-

plitudes, torpor patterns are highly variable both among

and within species (Fig. 2) [10, 29, 36, 53, 97, 98].

However, a decrease in Tb during winter can not only be

observed in heterothermic species, but also, to a lesser

degree, in homeothermic species. The homeothermic,

European red squirrels (Sciurus vulgaris), for example,

lower their Tb slightly during the winter [99]. This has

also been observed in large mammals, such as the red

deer (Cervus elaphus) [27] or the Przewalski horse

(Equus ferus przewalskii) [100]. Lower Tb combined with

Fig. 2 Examples of variable patterns of torpor expression, defined by reductions in body temperature (solid lines). Ambient temperatures are represented

by the dotted lines and night and day are illustrated by the grey and white bars, respectively. Shown are: (a) an Australian daily heterotherm showing one

short torpor bout (Petaurus breviceps, Order: Diprotodontia, Nowack unpublished data); (b) an opportunistic hibernator from Australia showing a bout of

multiday torpor (Nyctophilus bifax, Order: Chiroptera, Stawski and Geiser unpublished data); (c) a thermo-conforming tropical hibernator from Madagascar

during hibernation, the data shown are from a multi-day torpor bout with a single bout of activity occurring the night of the 23rd of September (Setfier

setosus, Order: Afrosoricida, data from [55]); and (d) a food storing hibernator from North America showing multiple single day bouts in the laboratory

(Tamias striatus, Order: Rodentia, data from [94])
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increased fur thickness can already lead to substantial

energy savings [101], without suffering the potential

negative side-effects of torpor [102–106]. Despite the

various benefits, torpor use is also associated with costs,

for example, a low Tb interferes with reproduction as it

delays fetal development (reviewed in [107]) and hinders

spermatogenesis [108, 109]. Further costs include slowed

locomotor reactions [89, 110], decreased sensory percep-

tion [110] and increased oxidative stress ([111], but see

[112]) therefore there is some benefit to avoiding or re-

ducing torpor if resources are abundant [102].

Traditionally, the study of heterothermy in mammals

has focused exclusively on strict categorical classifications:

daily heterotherm (torpor less than 24 h with a relatively

high torpid Tb), hibernator (multiday torpor bouts at low

Tb), or homeotherm. However, as thermoregulatory

characteristics from more species, especially those from

tropical or sub-tropical environments, have been made

available, it seems more likely that heterothermy and

homeothermy exist on a continuum [36, 53, 113]. Further-

more, by focusing entirely on strict categorical variables,

many studies have ignored the potential adaptive benefits

to small, non-torpid changes in Tb [7, 91]. It is clear that

there exists a high degree of variability in both the level of

Tb (often reported as mean Tb or set-point Tb) and the

precision with which it is regulated [10, 29, 36, 46].

Furthermore, it is probable that some degree of hetero-

thermy, and likely variable torpor expression, was the

ancestral condition in mammals, and that the high degree

of homeothermy in extant species evolved via a highly het-

erothermic ancestor [36, 53, 114]. Interestingly, whether

the variability in Tb observed is the result of differences in

the level of control over Tb, or the side-effect of differ-

ences in metabolism and thermal conductance, remains a

topic of debate [58, 67, 115]. After reviewing the Tb of a

large number of birds and mammals, Clarke and Rothery

[46] came to the conclusion that “… a complex relation-

ship between mass, Tb and resting metabolic rate and

leaves open the intriguing question of whether evolution

has adjusted resting metabolic rate through changes in Tb

or whether Tb is simply a consequence of resting meta-

bolic rate that has evolved for a particular environment

and ecology.” This confusion illustrates that we still lack a

basic mechanistic understanding of effects of Ta on mam-

malian Tb and metabolism, something which needs to be

taken into consideration when attempting large-scale,

multi-species, predictions of responses to climate change.

One potential complication arising from the complex

interplay between Tb, conductance, heat storage, water

balance and metabolism, is that Tb is rarely a good proxy

for energy expenditure. Unlike ectotherms, where differ-

ences in metabolic rate at different temperatures are

largely the result of Arrhenius effects of temperature on

metabolism [116], in endotherms the same Tb can be

the result of a number of energetically differing states

including, activity, resting, heating, cooling, or torpidity

[52, 91, 117]. Furthermore, behavioural thermoregula-

tion is common and many mammals bask to lower ener-

getic needs during rewarming from torpor [118–123] or

to reduce energy costs at cold Tas [26]. For example,

tree-roosting long-eared bats (Nyctophilus spp.) fre-

quently roost under exfoliating bark and in particular on

the northern facing side of the tree, which receives more

sun than the south side in the southern hemisphere

[124]. The roosting site, therefore receives sunlight

throughout the day and warms up considerably, allowing

bats to passively increase their Tb (Fig. 2b). Indeed,

throughout winter the Tb of long-eared bats was found

to fluctuate daily between 10–20 °C while remaining

torpid. Passive rewarming also allowed bats to save

energy on days when they rewarmed to a normothermic

Tb [124]. The benefits of basking has also been shown in

small marsupials, where in the field it was confirmed

that they are able to move at very low Tb (as low as

14.6 °C) to a basking site to further rewarm in the sun

[125–127]. The energetic savings of passive rewarming

have been confirmed for bats, marsupials, and primates

and arousal costs are decreased by up to 66 % in

comparison to active arousals [97, 120, 128]. Basking

also plays a role in the thermoregulation of large mam-

mals as indicated by the finding of radiant heat-assisted

rewarming during winter in a large mammal, the Alpine

ibex (Capra ibex ibex) [26]. Furthermore, depending on

the insulative properties of their resting sites, tropical

hibernators, such as tenrecs or lemurs (Fig. 2d), may

even undergo long-term hibernation in which their Tb

passively tracks Ta, leading to strong daily fluctuations of

Tb at a low metabolic cost [52, 55, 64, 97, 129]. The

potential for energy and water savings accrued by bask-

ing is therefore an important component to energy bud-

gets in species exposed to high Tas or to radiant heat.

For hibernating species the extent of torpor use can also

be dependent on body condition or quantity of available

food stores [102, 130]. For example, in southern African

hedgehogs (Atelerix frontalis) and mouse lemurs, only

heavy individuals will undergo hibernation during the

winter period, whereas individuals with a lower body mass

will only use shorter bouts of torpor [98, 131, 132].

Similarly, throughout summer when Ta is mild and insects

are abundant, individuals of the Australian subtropical/

tropical insectivorous Eastern long-eared bat (Nyctophilus

bifax) employ more torpor if they are in better body

condition in comparison to individuals in poorer body

condition [133]. The authors hypothesized that by using

torpor bats can reduce their need to forage, hence

reducing their exposure to predators [133]. Importantly,

individuals in better body condition can continue to

employ torpor and save fat reserves, whereas those in
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poorer body condition likely need to forage extensively to

meet their daily energy requirements [132, 133]. But

factors other than energy expenditure, such as low water

availability (see above) or the reproductive status of an

individual can also influence torpor use. While some spe-

cies abandon torpor use during pregnancy and lactation

[63, 138, 139], others will continue to use torpor to save

energy during inclement conditions and even to delay par-

turition until a more favourable time [107, 140, 141].

When attempting to model how a species will respond

to changes in climate, it is important to have an under-

standing of how often, and for how long, they will be able

to employ torpor. For a species with readily predictable

torpor bout lengths and hibernation seasons of a set

length, such as the Holarctic ground squirrels (family

Sciuridae, tribe Marmotini, [142]), this would often cover

the winter months only (eg. [143]), although this may

also change based on latitude or local climate conditions

[144, 145]. Such obligate hibernators, must undergo

significant pre-hibernation fattening before entering into

torpor [30, 105, 146, 147]. However, many species are able

to enter torpor opportunistically throughout the whole

year, depending on environmental conditions, and there-

fore, as we will discuss below, their energetic budget can

be difficult to predict [133, 148–152]. Further, recent

studies have indicated that torpor use increases in

response to unpredictable climatic conditions, such as

droughts, fires or storms [51, 110, 153, 154].

Variability in Tb, and therefore in energy usage, at both

the inter- and intra-specific level poses a complication

for predictive models. If an animal increases its Tb, ra-

ther than shouldering the costs of increased Ta through

energetically costly means of defending a set Tb, some of

the costs of rising Ta may be overestimated. Conversely,

in an animal attempting to reduce energy and water

usage through torpor, higher Ta can reduce potential

savings [64, 155]. In contrast to species that use torpor

opportunistically, strict hibernators that are less flexible

in their physiological response are likely to face negative

consequences when surface temperatures rise. Recent

studies have indicated that warmer winter temperatures

lead to more frequent arousals during hibernation

periods [155–157], imposing the risk for small seasonal

hibernators to deplete fat reserves before the end of

hibernation [158]. Therefore, to be able to accurately

predict mammalian responses to climate change, we

need to incorporate a level of predictability in hetero-

thermic responses.

To quantify the prevalence of predictability, or unpre-

dictability, in torpor usage within a species, we coded all

of the species found in Table 1 of Ruf and Geiser’s [29]

recent review of mammalian heterotherms as one of

three categories (Fig. 3). The first category, ‘predictable’,

was used to classify species which only employed torpor

(either via daily heterothermy or hibernation) in

response to seasonal shortages of food or water, or cold

temperatures. Species which were shown to employ

torpor in a highly variable manner or regardless of time

of year or season were classed as ‘unpredictable’. Finally,

species where all the measurements of Tb were from a

single season, or predominantly collected in the labora-

tory, were classed as ‘data deficient’. To date, most

species that have been demonstrated to use torpor

opportunistically inhabit warmer and more unpredict-

able habitats (Fig. 3a) [72, 159]. This finding, might be

due to the fact that many temperate or arctic species

have been only studied in the laboratory or exclusively

during the winter season, and the predictability of torpor

use for many temperate/arctic species is therefore

unknown. Interestingly, a slightly higher proportion of

daily heterotherms were unpredictable (57 % versus

46 % for hibernators) but a combined total of 31 % of

the species were found to be data deficient. This latter

finding indicates the need for further studies on free-

ranging animals, which was also one of the results of a

large comparison of two heterothermy metrics by Boyles

et al. [10]. One of the metrics from that study, the

thermoregulatory scope, necessitated only a mean

normothermic Tb and a minimum torpid Tb, whereas

the second, the heterothermy index, required continuous

Tb traces. The former had over ten times the number of

species (or measures from different species) than the

latter, although the authors admit to only being able to

obtain a subset of available Tb datasets. The amount of

data we have on heterothermy in mammals is heavily

skewed towards laboratory data, which often underesti-

mates torpor use [160]. A large number of the ‘data

deficient’ species were also found at the lower latitudes.

This is not surprising, however, because, our knowledge

of the physiology of tropical and sub-tropical mammals

lags far behind that of temperate species [52, 59, 64].

Conclusions: Tb variability, heterothermy, and

modelling
Studies on the Tb patterns and thermoregulation of free-

ranging animals have illustrated the effects, and some-

times confounding influences, of a number of factors

including predation risk [150], presence of conspecifics

[145], food availability [130, 161], competition [162] and

extreme events [50, 51, 153, 163] on Tb. Yet, robust

predictions of responses to climate change require an

in-depth understanding of how animals exist in the wild

[4, 8]. The level of unpredictability in terms of Tb

control in mammals can make predictions more compli-

cated, but not impossible. However, if we are to improve

our ability to predict potential responses of mammals to

a changing global climate, we need to improve our

understanding of endothermic physiology. Large-scale
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predictive models assessing the physiology of endo-

therms in relation to climate, and therefore their poten-

tial to be resilient (or not) in the face of global climate

change have lagged behind the literature on ectotherms

largely due to this fact. In particular, the lack of data on

upper critical limits of the TNZ in mammals, or of

thermal tolerance more broadly, as well as how these

relate to free-ranging populations, severely hinders our

current ability to build accurate models. The compre-

hensive study of responses to high Ta, both in the labora-

tory and the field is of pressing importance. Similarly, as

extreme events and variability in Ta are expected to

increase in the coming decades [35, 164], more effort

should be placed on quantifying the level of plasticity in

a species response to environmental conditions [72]. To

be able to include thermolability into predictive models

we must first understand it. We believe that three steps

are necessary to achieve this: 1) the level of Tb variabil-

ity, and its predictability, must be quantified in a range

of species; 2) the energy and water costs of strict homeo-

thermy versus any level of variability must be deter-

mined; and 3) the potential for variability must be

modelled to provide predictions under both low and

high variability scenarios. As has been mentioned previ-

ously, a first step would be to look to the ectotherm

literature, where a large body of work has evaluated the

costs and benefits to changing both the level (mean Tb)

and the precision (variability) [7, 10, 11], but we need to

ensure that we include a variety of species representing

different habitats, evolutionary histories, and life-

histories. Conceptual and predictive models taking into

account the potential for variability, and phenotypic

plasticity, will certainly prove to be more robust, and will

provide a greater means of understanding endothermic

physiology in the face of changing climates.
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