123 research outputs found

    Microcephaly

    Get PDF
    This issue of eMedRef provides information to clinicians on the pathophysiology, diagnosis, and therapeutics of microcephaly

    Insensitivity of Paediatric HIV-1 Subtype C Viruses to Broadly Neutralising Monoclonal Antibodies Raised against Subtype B

    Get PDF
    BACKGROUND: A Phase I clinical trial has been proposed that uses neutralising monoclonal antibodies (MAbs) as passive immunoprophylaxis to prevent mother-to-child transmission of HIV-1 in South Africa. To assess the suitability of such an approach, we determined the sensitivity of paediatric HIV-1 subtype C viruses to the broadly neutralising MAbs IgG1b12, 2G12, 2F5, and 4E10. METHODS AND FINDINGS: The gp160 envelope genes from seven children with HIV-1 subtype C infection were cloned and used to construct Env-pseudotyped viruses that were tested in a single-cycle neutralisation assay. The epitopes defining three of these MAbs were determined from sequence analysis of the envelope genes. None of the seven HIV-1 subtype C pseudovirions was sensitive to 2G12 or 2F5, which correlated with the absence of crucial N-linked glycans that define the 2G12 epitope and substitutions of residues integral to the 2F5 epitope. Four viruses were sensitive to IgG1b12, and all seven viruses were sensitive to 4E10. CONCLUSIONS: Only 4E10 showed significant activity against HIV-1 subtype C isolates, while 2G12 and 2F5 MAbs were ineffective and IgG1b12 was partly effective. It is therefore recommended that 2G12 and 2F5 MAbs not be used for passive immunization experiments in southern Africa and other regions where HIV-1 subtype C viruses predominate

    Improving the estimation of deep-sea megabenthos biomass: dimension to wet weight conversions for abyssal invertebrates

    Get PDF
    Deep-sea megafaunal biomass has typically been assessed by sampling with benthic sledges and trawls, but non-destructive methods, particularly photography, are becoming increasingly common. Estimation of individual wet weight in seabed photographs has been achieved using equations obtained from measured trawl-caught specimens for a limited number of taxa. However, a lack of appropriate conversion factors has limited estimation across taxa encompassing whole communities. Here we compile relationships between measured body dimensions and preserved wet weights for a comprehensive catalogue of abyssal epibenthic megafauna, using ~47,000 specimens from the Porcupine Abyssal Plain (NE Atlantic) housed in the Discovery Collections. The practical application of the method is demonstrated using an extremely large dataset of specimen measurements from seabed photographs taken in the same location. We also collate corresponding field data on fresh wet weight, to estimate the impact of fixation in formalin and preservation in industrial denatured alcohol on the apparent biomass. Taxa with substantial proportions of soft tissues lose 35 to 60% of their wet weight during preservation, while those with greater proportions of hard tissues lose 10 to 20%. Our total estimated fresh wet weight biomass of holothurians and cnidarians in the photographic survey was ~20 times the previous estimates of total invertebrate biomass based on trawl catches. This dramatic uplift in megabenthic biomass has significant implications for studies of standing stocks, community metabolism, and numerical modelling of benthic carbon flows

    Sex Differences in the Fecal Microbiome and Hippocampal Glial Morphology Following Diet and Antibiotic Treatment

    Get PDF
    Rising obesity rates have become a major public health concern within the United States. Understanding the systemic and neural effects of obesity is crucial in designing preventive and therapeutic measures. In previous studies, administration of a high fat diet has induced significant weight gain for mouse models of obesity. Interestingly, sex differences in high-fat diet-induced weight gain have been observed, with female mice gaining significantly less weight compared to male mice on the same high-fat diet. It has also been observed that consumption of a high-fat diet can increase neurogliosis, but the mechanism by which this occurs is still not fully understood. Recent research has suggested that the gut microbiome may mediate diet-induced glial activation. The current study aimed to (1) analyze changes to the gut microbiome following consumption of a high fat (HF) diet as well as antibiotic treatment, (2) evaluate hippocampal microgliosis and astrogliosis, and (3) identify sex differences within these responses. We administered a low fat (Research Diets D12450 K) or high fat diet (Research Diets D12451) to male and female C57Bl/6 mice for sixteen weeks. Mice received an antibiotic cocktail containing 0.5g/L of vancomycin, 1.0 g/L ampicillin, 1.0 g/L neomycin, and 1.0 g/L metronidazole in their drinking water during the last six weeks of the study and were compared to control mice receiving normal drinking water throughout the study. We observed a significant reduction in gut microbiome diversity for groups that received the antibiotic cocktail, as determined by Illumina next-generation sequencing. Male mice fed the HF diet (± antibiotics) had significantly greater body weights compared to all other groups. And, female mice fed the low fat (LF) diet and administered antibiotics revealed significantly decreased microgliosis and astrogliosis in the hippocampus compared to LF-fed females without antibiotics. Interestingly, male mice fed the LF diet and administered antibiotics revealed significantly increased microgliosis, but decreased astrogliosis, compared to LF-fed males without antibiotics. The observed sex differences in LF-fed mice given antibiotics brings forward questions about sex differences in nutrient metabolism, gut microbiome composition, and response to antibiotics

    SEAmester – South Africa’s first class afloat

    Get PDF
    publisher versionFrom Introduction: Marine science is a highly competitive environment. The need to improve the cohort of South African postgraduates, who would be recognised both nationally and internationally for their scientific excellence, is crucial. It is possible to attract students early on in their careers to this discipline via cutting-edge science, technology and unique field experiences. Through the engagement of students with real-life experiences such as SEAmester, universities supporting marine science postgraduate degree programmes can attract a sustainable throughput of numerically proficient students. By achieving a more quantitative and experienced input into our postgraduate degree programmes, we will, as a scientific community, greatly improve our long-term capabilities to accurately measure, model and predict the impacts of current climate change scenarios. The short-term goal is to attract and establish a cohort of proficient marine and atmospheric science graduates who will contribute to filling the capacity needs of South African marine science as a whole. The SEAmester programme, by involving researchers from across all the relevant disciplines and tertiary institutions, provides an opportunity to build a network of collaborative teaching within the marine field. In doing so, these researchers will foster and strengthen new and current collaborations between historically white and black universities (Figure 1). The long-term objective of SEAmester is to build critical mass within the marine sciences to ensure sustained growth of human capacity in marine science in South Africa – aligning closely with the current DST Research and Development strategies and the Operation Phakisa Oceans Economy initiative

    Comparison of MRI lesion evolution in different central nervous system demyelinating disorders

    Get PDF
    Background and Objective: There are few studies that compare lesion evolution across different CNS demyelinating diseases, yet knowledge of this may be important for diagnosis and understanding differences in disease pathogenesis. We sought to compare MRI T2-lesion evolution in myelin-oligodendrocyte-glycoprotein-IgG-associated disorder (MOGAD), aquaporin-4-IgG-positive neuromyelitis optica spectrum disorder (AQP4-IgG-NMOSD), and multiple sclerosis (MS). Methods: In this descriptive study, we retrospectively identified Mayo Clinic patients with MOGAD, AQP4-IgG-NMOSD, or MS and: 1) brain or myelitis attack; 2) available attack MRI within 6 weeks; and 3) follow-up MRI beyond 6 months without interval relapses in that region. Two neurologists identified the symptomatic or largest T2-lesion for each patient (index lesion). MRIs were then independently reviewed by two neuroradiologists blinded to diagnosis to determine resolution of T2-lesions by consensus. The index T2-lesion area was manually outlined acutely and at follow-up to assess variation in size. Results: We included 156 patients (MOGAD, 38; AQP4-IgG-NMOSD, 51; MS, 67) with 172 attacks (brain, 81; myelitis, 91). The age (median [range]) differed between MOGAD (25 [2-74]), AQP4-IgG-NMOSD (53 [10-78]) and MS (37 [16-61]) (p<0.01) and female sex predominated in the AQP4-IgG-NMOSD (41/51 [80%]) and MS (51/67 [76%]) groups but not among those with MOGAD (17/38 [45%]). Complete resolution of the index T2-lesion was more frequent in MOGAD (brain, 13/18[72%]; spine, 22/28[79%]) than AQP4-IgG-NMOSD (brain, 3/21[14%]; spine, 0/34[0%]) and MS (brain, 7/42[17%]; spine, 0/29[0%]), p<0.001. Resolution of all T2-Lesions occurred most often in MOGAD (brain, 7/18[39%]; spine, 22/28[79%]) than AQP4-IgG-NMOSD (brain, 2/21[10%]; spine, 0/34[0%]), and MS (brain, 2/42[5%]; spine, 0/29[0%]), p< 0.01. There was a larger median (range) reduction in T2-lesion area in mm2 on follow-up axial brain MRI with MOGAD (213[55-873]) than AQP4-IgG-NMOSD (104[0.7-597]) (p=0.02) and MS, 36[0-506]) (p< 0.001) and the reductions in size on sagittal spine MRI follow-up in MOGAD (262[0-888]) and AQP4-IgG-NMOSD (309[0-1885]) were similar (p=0.4) and greater than MS (23[0-152]) (p<0.001)

    Development and Initial Validation of a Self-Scored COPD Population Screener Questionnaire (COPD-PS)

    Get PDF
    COPD has a profound impact on daily life, yet remains underdiagnosed and undertreated. We set out to develop a brief, reliable, self-scored questionnaire to identify individuals likely to have COPD. COPD-PS™ development began with a list of concepts identified for inclusion using expert opinion from a clinician working group comprised of pulmonologists (n = 5) and primary care clinicians (n = 5). A national survey of 697 patients was conducted at 12 practitioner sites. Logistic regression identified items discriminating between patients with and without fixed airflow obstruction (AO, postbronchodilator FEV1/FVC < 70%). ROC analyses evaluated screening accuracy, compared scoring options, and assessed concurrent validity. Convergent and discriminant validity were assessed via COPD-PS and SF-12v2 score correlations. For known-groups validation, COPD-PS differences between clinical groups were tested. Test-retest reliability was evaluated in a 20% sample. Of 697 patients surveyed, 295 patients met expert review criteria for spirometry performance; 38% of these (n = 113) had results indicating AO. Five items positively predicted AO (p < 0.0001): breathlessness, productive cough, activity limitation, smoking history, and age. COPD-PS scores accurately classified AO status (area under ROC curve = 0.81) and reliable (r = 0.91). Patients with spirometry indicative of AO scored significantly higher (6.8, SD = 1.9; p < 0.0001) than patients without AO (4.0, SD = 2.3). Higher scores were associated with more severe AO, bronchodilator use, and overnight hospitalization for breathing problems. With the prevalence of COPD in the studied cohort, a score on the COPD-PS of greater than five was associated with a positive predictive value of 56.8% and negative predictive value of 86.4%. The COPD-PS accurately classified physician-reported COPD (AUC = 0.89). The COPD-PS is a brief, accurate questionnaire that can identify individuals likely to have COPD

    A framework for the development of a global standardised marine taxon reference image database (SMarTaR-ID) to support image-based analyses

    Get PDF
    Video and image data are regularly used in the field of benthic ecology to document biodiversity. However, their use is subject to a number of challenges, principally the identification of taxa within the images without associated physical specimens. The challenge of applying traditional taxonomic keys to the identification of fauna from images has led to the development of personal, group, or institution level reference image catalogues of operational taxonomic units (OTUs) or morphospecies. Lack of standardisation among these reference catalogues has led to problems with observer bias and the inability to combine datasets across studies. In addition, lack of a common reference standard is stifling efforts in the application of artificial intelligence to taxon identification. Using the North Atlantic deep sea as a case study, we propose a database structure to facilitate standardisation of morphospecies image catalogues between research groups and support future use in multiple front-end applications. We also propose a framework for coordination of international efforts to develop reference guides for the identification of marine species from images. The proposed structure maps to the Darwin Core standard to allow integration with existing databases. We suggest a management framework where high-level taxonomic groups are curated by a regional team, consisting of both end users and taxonomic experts. We identify a mechanism by which overall quality of data within a common reference guide could be raised over the next decade. Finally, we discuss the role of a common reference standard in advancing marine ecology and supporting sustainable use of this ecosystem
    corecore