Microcephaly

Background

- 1. Definition varies
 - Head circumference [occipito-frontal circumference (OFC)]
 - <2 standard deviations (SD) below mean for age (<3rd percentile)</p>
 - <3 SD (<1st percentile) = severe microcephaly¹
 - Actual growth charts
 - http://www.cdc.gov/growthcharts/charts.htm#set1
 - \circ $\;$ Some definitions adjust for prematurity and parental head size
- 2. General information
 - May require serial measurements (crossing several percentile lines); in utero antenatal diagnosis requires multiple measures less than 3 or 4 SD
- 3. CDC growth charts based on US population are slightly different than WHO charts
 - o <u>http://www.who.int/childgrowth/standards/hc_for_age/en/index.html</u>

Pathophysiology

- 1. Pathology of disease
 - Lack of brain development from variety of causes or insult to a previously normal brain
- 2. Incidence, prevalence
 - By definition 1-3% of population; individual etiologies much less common
- 3. Risk factors / etiology
 - Genetic
 - Isolated vs. syndromic microcephaly
 - Several genes and multiple syndromes with associated anomalies
 - Microcephalia vera (MV) and microcephaly with simplified gyral pattern (MSG) are genetic forms of isolated congenital microcephaly with no extracerebral malformation
 - Well-known associated genetic syndromes
 - Down syndrome, Trisomy 18, Trisomy 13, Cri-du-chat
 - Neuroanatomic abnormalities
 - Neural tube defects, holoprosencephaly, others
 - See http://www.merck.com/mmpe/sec19/ch292/ch292b.html#sec19ch292-ch292b-2567
 - Metabolic
 - Aminoacidurias, urea cycle disorders, organic acidurias, storage dz
 - Infection
 - TORCH
 - Toxoplasmosis
 - Hepatitis B
 - Syphilis
 - Herpes zoster
 - Rubella
 - Cytomegalovirus (CMV)
 - Herpes simplex virus

- Drug / toxin exposure in utero
 - Fetal alcohol syndrome, maternal opioid use
- Acquired brain injury
 - Hypoxic-ischemic insult, intraventricular hemorrhage
- Systemic disease
 - Renal failure, biliary atresia, etc
- Severe malnutrition
- Hyperthermia
 - Associated with significant fever in 1st trimester with seizures and facial anomalies
- Abnormal fusion of cranial sutures
 - Craniosynostosis
- 4. Morbidity / mortality
 - Most cases associated with some degree of mental retardation
 - Severity correlates with degree of microcephaly
 - Craniosynostosis morbidity depends on severity and if treated early (referred by 8-12 months)
 - Most conditions
 - Prognosis depends on cause, severity, and associated abnormalities

Diagnosis

- 1. History
 - Prenatal history
 - Maternal medical illness, medications, tobacco, substance abuse
 - Findings on prenatal lab tests and ultrasounds
 - Birth history
 - Infections, medications, complications
 - Family history
 - Similar conditions, consanguinity, syndromes
 - Parental head size
 - Developmental and neurologic history
 - Milestones, seizures
- 2. Physical examination

0

- Technique of measurement
 - http://www.simulconsult.com/resources/ftemp20.html
- Compare height, weight, OFC percentiles
- Genetic influences
 - Weaver curve compares child's OFC to that expected based on parental OFC²
- OFC trajectory; height and weight trajectories
- General appearance
 - Dysmorphic features
- Head
 - Sutures and fontanelles
 - Head symmetry
- Eyes
 - Chorioretinitis, cataracts

- o Mouth
 - Midline defects with holoprosencephaly and related conditions
- o Skin
 - Petechiae, jaundice, eczema (infection, metabolic or systemic dz)
- Abdomen
 - Hepatosplenomegaly with infection, metabolic dz
- Neurologic
 - Reflexes, symmetry, muscle tone
- 3. Diagnostic testing

0

• Physical findings can be used to identify syndromes, for example entering findings into OMIM database

http://www.ncbi.nlm.nih.gov/omim/

- Especially if dysmorphic features, short stature
 - Consider karyotype, genetic analysis
- Maternal serum phenylalanine level
- Fasting plasma and urine amino acids
- Serum ammonia
- Thyroid stimulating hormone
- Infection
 - TORCH titers
 - Urine CMV culture
 - Maternal and infant HIV
- Diagnostic imaging
 - MRI esp if abnormal development or neuro exam
 - CT or cephalometric radiography if craniosynostosis suspected
- 4. Diagnostic criteria
 - OFC
 - <2 SD from mean for age
 - <3 SD severe; or
 - Decreasing head growth, crossing 2 or 3 major percentile lines on growth curve
- 5. Recommendations
 - Neuroimaging is recommended in a child with global developmental delay
 - As presence of physical findings (e.g., microcephaly, focal motor findings) increases, the yield of making a specific diagnosis increases, and scan has higher yield³
 - Every child (birth through 24 months of age) found to have microcephaly should be followed and periodically screened for late-onset congenital or acquired hearing loss⁴

Differential Diagnosis

- 1. Key DDx
 - Craniosynostosis
- 2. Extensive DDx
 - Primary
 - Genetic
 - Isolated Microcephaly: present at birth, no other anomalies

- Receding forehead, normal-sized face, and relatively large-appearing ears
- Autosomal dominant: normal stature, normal intelligence or mild MR
- X-Linked: severe MR
- Syndromic
 - Trisomy 13
 - Trisomy 18 syndrome
 - Cornelia de Lange's syndrome
 - Rubinstein-Taybi syndrome
 - Prader-Willi syndrome
- Neuroanatomic
 - Neural tube defects
 - Holoprosencephaly
 - Incomplete development and septation of midline CNS structures
 - Varying degrees of brain separation, hypotelorism, facial clefts, and nasal malformations
 - Atelencephaly
 - Absence of cerebrum and associated structures
 - Lissencephaly
 - Surface of the brain appears completely or partially smooth with loss or reduction of sulci
 - Schizencephaly
 - Asymmetric infolding of cortical gray matter
 - Polymicrogyria
 - Excessive gyri on surface of brain
 - Macrogyria
 - Reduction in number of sulci of cerebrum and is often seen in lissencephaly
 - Fetal brain disruption sequence
 - Severe microcephaly of prenatal onset (average OFC 5.8 SD below the mean), overlapping cranial sutures, prominence of the occipital bone, and scalp rugae
- Secondary
 - Metabolic disorders
 - PKU
 - Part of Newborn screen in all 50 states, District of Columbia, Puerto Rico, US Virgin Islands and Guam
 - Methylmalonic aciduria
 - Typically have severe metabolic acidosis with an
 - increased anion gap, ketosis, and hyperammonemia
 - Citrullinemia
 - Quantitative plasma amino acid analysis
 - Environmental factors
 - TORCH infections: Toxoplasmosis, Other (syphilis), Rubella, CMV, HSV
 - In utero toxin exposure (ie ETOH, illicits, solvents)

- Hypoxic-ischemic insults
- Intraventricular hemorrhage or stroke
- Malnutrition

Therapeutics

- 1. Acute treatment
 - Not an urgent condition unless associated metabolic or systemic illness present
- 2. Further management
 - If severe and congenital, evaluation and consultation indicated
 - If OFC is low-normal, can be followed serially
 - Management depends on etiology
 - Craniosynostosis
 - Referral to craniofacial team by age 8-12 months
 - Dietary modification for certain metabolic syndromes
 - Treatment if specific infection identified
 - Treat underlying medical illness, as appropriate (thyroid, renal, hepatic)
 - Neurosurgical referral for neural tube defects, neuroanatomic anomalies
 - Genetics, developmental pediatrics referral if genetic syndrome identified
- 3. Long-term care
 - Family and patient typically need long term psychological support
 - Medical social work involvement for support and resources⁵

Follow-Up

- 1. Return to office
 - Newborn
 - Depends on etiology and severity
 - Declining OFC in older child: repeat exam in 1-2 months if developmentally normal
 - Recommendations for earlier follow-up
 - Vomiting, delayed milestones, focal neurologic symptoms
- 2. Refer to specialist
 - o Newborn
 - Genetics, developmental pediatrics, neurosurgery as indicated
 - Older child
 - Depends on suspected cause, consider developmental pediatrics
 - o Craniosynostosis
 - Craniofacial team (neurosurgery, plastic surgery, otolaryngology, speech therapy, audiology, radiology, orthodontics, etc.)
- 3. Admit to hospital
 - Concern regarding increased intracranial pressure (vomiting, altered awareness)

Prognosis

- 1. Poor postnatal head growth in preterm infants becomes more evident by 2 years and is strongly associated with poor neurodevelopmental outcome and cerebral palsy⁶
- 2. Otherwise prognosis depends on underlying cause

Prevention

- 1. Women who use heroin should be maintained on an opioid agonist other than heroin during pregnancy; use of long-acting morphine is superior to methadone in abstention rates during pregnancy⁷
- 2. Identify women who use alcohol in pregnancy and counsel regarding cessation⁸
- 3. Ensure needed immunizations in women prenatally

Patient Education

- 1. National Institute of Neurological Disorders and Stroke
 - o http://www.ninds.nih.gov/disorders/microcephaly/microcephaly.htm
- National Library of Medicine: Medline Plus

 <u>http://www.nlm.nih.gov/medlineplus/ency/article/003272.htm</u>
- 3. Foundation for Children with Microcephaly
 - <u>http://www.childrenwithmicro.org/</u>

References

- Kinsman SL, Johnston MV. Chapter 592: Congenital anomalies of the central nervous system. In: Kliegman RM, Behrman, RE, Jenson, HB, Stanton, BF. Kliegman: Nelson Textbook of Pediatrics, 18th ed. Philadelphia: Saunders-Elsevier 2007.
- 2. Weaver, DD, Christian, JC. Familial variation in head size and adjustment for parental head circumference. J Pediatr 1980; 96:990.
- Shevell M, Ashwal S, Donley D, Flint J, Gingold M, Hirtz D, Majnemer A, Noetzel M, Sheth RD. Practice parameter: evaluation of the child with global developmental delay: report of the Quality Standards Subcommittee of the American Academy of Neurology and the Practice Committee of the Child Neurology Society. Neurology 2003 Feb 11;60(3):367-80.
- 4. Cunningham M, Cox EO. Hearing assessment in infants and children: recommendations beyond neonatal screening. Pediatrics 2003 Feb;111(2):436-40.
- 5. Wise, PH. Chapter 38: Developmental disabilities and chronic disease. In: Kliegman RM, Behrman, RE, Jenson, HB, Stanton, BF. Kliegman: Nelson Textbook of Pediatrics, 18th ed. Philadelphia: Saunders-Elsevier 2007.
- 6. Cheong JL, Hunt RW, Anderson PJ, Howard K, Thompson DK, Wang HX, Bear MJ, Inder TE, Doyle LW. Head growth in preterm infants: correlation with magnetic resonance imaging and neurodevelopmental outcome. Pediatrics. 2008 Jun;121(6):e1534-40
- Minozzi S, Amato L, Vecchi S, Davoli M. Maintenance agonist treatments for opiate dependent pregnant women. Cochrane Database of Systematic Reviews 2008, Issue 2.
- 8. May P. A multiple-level, comprehensive approach to the prevention of fetal alcohol syndrome (FAS) and other alcohol related birth defects (ARBD). Int J Addictions, 1995; 30(12): 1549-1602.

- Authors: Thomas Michels, MD, Monica Morris, MD, & Tammy Myers, MD, University of Colorado FMR, Denver, CO
- Editor: Vince WinklerPrins, MD, Georgetown University-Providence Hospital, Washington DC