2,547 research outputs found

    Measurement of the Λ0b→ J/ψΛ angular distribution and the Λ0b polarisation in pp collisions

    Get PDF
    This paper presents an analysis of the Λ0b→ J/ψΛ angular distribution and the transverse production polarisation of Λ0b baryons in proton-proton collisions at centre-of-mass energies of 7, 8 and 13 TeV. The measurements are performed using data corresponding to an integrated luminosity of 4.9 fb−1, collected with the LHCb experiment. The polarisation is determined in a fiducial region of Λ0b transverse momentum and pseudorapidity of 1 < pT< 20 GeV/c and 2 < η < 5, respectively. The data are consistent with Λ0b baryons being produced unpolarised in this region. The parity-violating asymmetry parameter of the Λ → pπ− decay is also determined from the data and its value is found to be consistent with a recent measurement by the BES III collaboration

    Bone mass of female dance students prior to professional dance training: A cross-sectional study

    Get PDF
    Article Authors Metrics Comments Related Content Abstract Introduction Methods Results Discussion Conclusions Acknowledgments References Reader Comments (0) Media Coverage (0) Figures Abstract Background Professional dancers are at risk of developing low bone mineral density (BMD). However, whether low BMD phenotypes already exist in pre-vocational dance students is relatively unknown. Aim To cross-sectionally assess bone mass parameters in female dance students selected for professional dance training (first year vocational dance students) in relation to aged- and sex-matched controls. Methods 34 female selected for professional dance training (10.9yrs ±0.7) and 30 controls (11.1yrs ±0.5) were examined. Anthropometry, pubertal development (Tanner) and dietary data (3-day food diary) were recorded. BMD and bone mineral content (BMC) at forearm, femur neck (FN) and lumbar spine (LS) were assessed using Dual-Energy X-Ray Absorptiometry. Volumetric densities were estimated by calculating bone mineral apparent density (BMAD). Results Dancers were mainly at Tanner pubertal stage I (vs. stage IV in controls, p<0.001), and demonstrated significantly lower body weight (p<0.001) and height (p<0.01) than controls. Calorie intake was not different between groups, but calcium intake was significantly greater in dancers (p<0.05). Dancers revealed a significantly lower BMC and BMD values at all anatomical sites (p<0.001), and significantly lower BMAD values at the LS and FN (p<0.001). When adjusted for covariates (body weight, height, pubertal development and calcium intake), dance students continued to display a significantly lower BMD and BMAD at the FN (p<0.05; p<0.001) at the forearm (p<0.01). Conclusion Before undergoing professional dance training, first year vocational dance students demonstrated inferior bone mass compared to controls. Longitudinal models are required to assess how bone health-status changes with time throughout professional training

    Large-scale genome-wide association studies and meta-analyses of longitudinal change in adult lung function.

    Get PDF
    BACKGROUND: Genome-wide association studies (GWAS) have identified numerous loci influencing cross-sectional lung function, but less is known about genes influencing longitudinal change in lung function. METHODS: We performed GWAS of the rate of change in forced expiratory volume in the first second (FEV1) in 14 longitudinal, population-based cohort studies comprising 27,249 adults of European ancestry using linear mixed effects model and combined cohort-specific results using fixed effect meta-analysis to identify novel genetic loci associated with longitudinal change in lung function. Gene expression analyses were subsequently performed for identified genetic loci. As a secondary aim, we estimated the mean rate of decline in FEV1 by smoking pattern, irrespective of genotypes, across these 14 studies using meta-analysis. RESULTS: The overall meta-analysis produced suggestive evidence for association at the novel IL16/STARD5/TMC3 locus on chromosome 15 (P  =  5.71 × 10(-7)). In addition, meta-analysis using the five cohorts with ≥3 FEV1 measurements per participant identified the novel ME3 locus on chromosome 11 (P  =  2.18 × 10(-8)) at genome-wide significance. Neither locus was associated with FEV1 decline in two additional cohort studies. We confirmed gene expression of IL16, STARD5, and ME3 in multiple lung tissues. Publicly available microarray data confirmed differential expression of all three genes in lung samples from COPD patients compared with controls. Irrespective of genotypes, the combined estimate for FEV1 decline was 26.9, 29.2 and 35.7 mL/year in never, former, and persistent smokers, respectively. CONCLUSIONS: In this large-scale GWAS, we identified two novel genetic loci in association with the rate of change in FEV1 that harbor candidate genes with biologically plausible functional links to lung function

    New genetic loci implicated in fasting glucose homeostasis and their impact on type 2 diabetes risk.

    Get PDF
    Levels of circulating glucose are tightly regulated. To identify new loci influencing glycemic traits, we performed meta-analyses of 21 genome-wide association studies informative for fasting glucose, fasting insulin and indices of beta-cell function (HOMA-B) and insulin resistance (HOMA-IR) in up to 46,186 nondiabetic participants. Follow-up of 25 loci in up to 76,558 additional subjects identified 16 loci associated with fasting glucose and HOMA-B and two loci associated with fasting insulin and HOMA-IR. These include nine loci newly associated with fasting glucose (in or near ADCY5, MADD, ADRA2A, CRY2, FADS1, GLIS3, SLC2A2, PROX1 and C2CD4B) and one influencing fasting insulin and HOMA-IR (near IGF1). We also demonstrated association of ADCY5, PROX1, GCK, GCKR and DGKB-TMEM195 with type 2 diabetes. Within these loci, likely biological candidate genes influence signal transduction, cell proliferation, development, glucose-sensing and circadian regulation. Our results demonstrate that genetic studies of glycemic traits can identify type 2 diabetes risk loci, as well as loci containing gene variants that are associated with a modest elevation in glucose levels but are not associated with overt diabetes

    The Future of Agent-Based Modeling

    Get PDF
    In this paper, I elaborate on the role of agent-based (AB) modeling for macroeconomic research. My main tenet is that the full potential of the AB approach has not been realized yet. This potential lies in the modular nature of the models, which is bought by abandoning the straitjacket of rational expectations and embracing an evolutionary perspective. I envisage the foundation of a Modular Macroeconomic Science, where new models with heterogeneous interacting agents, endowed with partial information and limited computational ability, can be created by recombining and extending existing models in a unified computational framework

    Precise determination of the B s 0 – B ¯ s 0 oscillation frequency

    Get PDF
    Mesons comprising a beauty quark and strange quark can oscillate between particle (Bs0) and antiparticle (B¯s0) flavour eigenstates, with a frequency given by the mass difference between heavy and light mass eigenstates, Δms. Here we present a measurement of Δms using Bs0→Ds−π+ decays produced in proton–proton collisions collected with the LHCb detector at the Large Hadron Collider. The oscillation frequency is found to be Δms = 17.7683 ± 0.0051 ± 0.0032 ps−1, where the first uncertainty is statistical and the second is systematic. This measurement improves on the current Δms precision by a factor of two. We combine this result with previous LHCb measurements to determine Δms = 17.7656 ± 0.0057 ps−1, which is the legacy measurement of the original LHCb detector

    J/ψ and D0 production in sNN−−−√=68.5GeV PbNe collisions

    Get PDF
    The first measurement of J/ψ and D0 production in PbNe collisions by the LHCb experiment in its fixed-target configuration is reported. The production of J/ψ and D0 mesons is studied with a beam of lead ions with an energy of 2.5TeV per nucleon colliding on gaseous neon targets at rest, corresponding to a nucleon-nucleon centre-of-mass energy of sNN−−−√=68.5GeV. The J/ψ/D0 production cross-section ratio is studied as a function of rapidity, transverse momentum and collision centrality. These data are compared with measurements from pNe collisions at the same energy and show no difference in the observed J/ψ suppression trend when comparing pNe and PbNe peripheral collisions with PbNe central collisions
    corecore