58 research outputs found

    Secondary insults following traumatic brain injury enhance complement activation in the human brain and release of the tissue damage marker S100B

    Get PDF
    To access publisher full text version of this article. Please click on the hyperlink in Additional Links field.OBJECT: Complement activation has been suggested to play a role in the development of secondary injuries following traumatic brain injury (TBI). The present study was initiated in order to analyze complement activation in relation to the primary brain injury and to secondary insults, frequently occurring following TBI. METHODS: Twenty patients suffering from severe TBI (Glasgow coma score ≤ 8) were included in the study. The "membrane attack complex," C5b9, which is the cytolytic end product of the complement system was analyzed in cerebrospinal fluid (CSF). The degree of brain tissue damage was assessed using the release of S100B and neuron-specific enolase (NSE) to the CSF and blood. The blood-brain barrier was assessed using the CSF/serum quotient of albumin (Q (A)). RESULTS: Following impact, initial peaks (0-48 h) of C5b9, S100B, and NSE with a concomitant loss of integrity of the blood-brain barrier were observed. Secondary insults at the intensive care unit were monitored. Severe secondary insults were paralleled by a more pronounced complement activation (C5b9 in CSF) as well as increased levels of S100B (measured in CSF), but not with NSE. CONCLUSION: This human study indicates that complement activation in the brain is triggered not only by the impact of trauma per se but also by the amount of secondary insults that frequently occur at the scene of accident as well as during treatment in the neurointensive care unit. Complement activation and in particular the end product C5b9 may in turn contribute to additional secondary brain injuries by its membrane destructive properties

    The Bidirectional Relationship Between Sleep and Inflammation Links Traumatic Brain Injury and Alzheimer's Disease

    Get PDF
    Traumatic brain injury (TBI) and Alzheimer’s disease (AD) are diseases during which the fine-tuned autoregulation of the brain is lost. Despite the stark contrast in their causal mechanisms, both TBI and AD are conditions which elicit a neuroinflammatory response that is coupled with physical, cognitive, and affective symptoms. One commonly reported symptom in both TBI and AD patients is disturbed sleep. Sleep is regulated by circadian and homeostatic processes such that pathological inflammation may disrupt the chemical signaling required to maintain a healthy sleep profile. In this way, immune system activation can influence sleep physiology. Conversely, sleep disturbances can exacerbate symptoms or increase the risk of inflammatory/neurodegenerative diseases. Both TBI and AD are worsened by a chronic pro-inflammatory microenvironment which exacerbates symptoms and worsens clinical outcome. Herein, a positive feedback loop of chronic inflammation and sleep disturbances is initiated. In thisreview, the bidirectional relationship between sleep disturbances and inflammation is discussed, where chronic inflammation associated with TBI and AD can lead to sleep disturbances and exacerbated neuropathology. The role of microglia and cytokines in sleep disturbances associated with these diseases is highlighted. The proposed sleep and inflammation-mediated link between TBI and AD presents an opportunity for a multifaceted approach to clinical intervention

    Neurogenic inflammation after traumatic brain injury and its potentiation of classical inflammation

    Get PDF
    Background: The neuroinflammatory response following traumatic brain injury (TBI) is known to be a key secondary injury factor that can drive ongoing neuronal injury. Despite this, treatments that have targeted aspects of the inflammatory pathway have not shown significant efficacy in clinical trials. Main body: We suggest that this may be because classical inflammation only represents part of the story, with activation of neurogenic inflammation potentially one of the key initiating inflammatory events following TBI. Indeed, evidence suggests that the transient receptor potential cation channels (TRP channels), TRPV1 and TRPA1, are polymodal receptors that are activated by a variety of stimuli associated with TBI, including mechanical shear stress, leading to the release of neuropeptides such as substance P (SP). SP augments many aspects of the classical inflammatory response via activation of microglia and astrocytes, degranulation of mast cells, and promoting leukocyte migration. Furthermore, SP may initiate the earliest changes seen in blood-brain barrier (BBB) permeability, namely the increased transcellular transport of plasma proteins via activation of caveolae. This is in line with reports that alterations in transcellular transport are seen first following TBI, prior to decreases in expression of tight-junction proteins such as claudin-5 and occludin. Indeed, the receptor for SP, the tachykinin NK1 receptor, is found in caveolae and its activation following TBI may allow influx of albumin and other plasma proteins which directly augment the inflammatory response by activating astrocytes and microglia. Conclusions: As such, the neurogenic inflammatory response can exacerbate classical inflammation via a positive feedback loop, with classical inflammatory mediators such as bradykinin and prostaglandins then further stimulating TRP receptors. Accordingly, complete inhibition of neuroinflammation following TBI may require the inhibition of both classical and neurogenic inflammatory pathways.Frances Corrigan, Kimberley A. Mander, Anna V. Leonard and Robert Vin

    Neurogenic inflammation after traumatic brain injury and its potentiation of classical inflammation

    Full text link
    • …
    corecore