32 research outputs found

    Beta diversity of plant-pollinator networks and the spatial turnover of pairwise interactions

    Get PDF
    Interactions between species form complex networks that vary across space and time. Even without spatial or temporal constraints mutualistic pairwise interactions may vary, or rewire, across space but this variability is not well understood. Here, we quantify the beta diversity of species and interactions and test factors influencing the probability of turnover of pairwise interactions across space. We ask: 1) whether beta diversity of plants, pollinators, and interactions follow a similar trend across space, and 2) which interaction properties and site characteristics are related to the probability of turnover of pairwise interactions. Geographical distance was positively correlated with plant and interaction beta diversity. We find that locally frequent interactions are more consistent across space and that local flower abundance is important for the realization of pairwise interactions. While the identity of pairwise interactions is highly variable across space, some speciespairs form interactions that are locally frequent and spatially consistent. Such interactions represent cornerstones of interacting communities and deserve special attention from ecologists and conservation planners alike.Fil: Carstensen, Daniel W.. Universidade Estadual Paulista Julio de Mesquita Filho; BrasilFil: Sabatino, Cristina Malena. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina. Universidad Nacional del Comahue. Centro Regional Universitario Bariloche. Laboratorio de Ecotono; ArgentinaFil: Trøjelsgaard, Kristian. University Aarhus; Dinamarca. Aalborg University; DinamarcaFil: Morellato, Leonor Patricia C.. Universidade Estadual Paulista Julio de Mesquita Filho; Brasi

    Climate change, in the framework of the constructal law

    Get PDF
    Here we present a simple and transparent alternative to the complex models of Earth thermal behavior under time-changing conditions. We show the one-to-one relationship between changes in atmospheric properties and time-dependent changes in temperature and its distribution on Earth. The model accounts for convection and radiation, thermal inertia and changes in albedo (ρ) and greenhouse factor (γ). The constructal law is used as the principle that governs the evolution of flow configuration in time, and provides closure for the equations that describe the model. In the first part of the paper, the predictions are tested against the current thermal state of Earth. Next, the model showed that for two time-dependent scenarios, (δρ = 0.002; δγ = 0.011) and (δρ = 0.002; δγ = 0.005) the predicted equatorial and polar temperature increases and the time scales are (Δ<i>T</i><sub>H</sub> = 1.16 K; Δ<i>T</i><sub>L</sub> = 1.11 K; 104 years) and (0.41 K; 0.41 K; 57 years), respectively. In the second part, a continuous model of temperature variation was used to predict the thermal response of the Earth's surface for changes bounded by δρ = δγ and δρ = −δγ. The results show that the global warming amplitudes and time scales are consistent with those obtained for δρ = 0.002 and δγ = 0.005. The poleward heat current reaches its maximum in the vicinity of 35° latitude, accounting for the position of the Ferrel cell between the Hadley and Polar Cells

    Spatio-Temporal Vegetation Pixel Classification by Using Convolutional Networks

    Get PDF
    Plant phenology studies rely on long-term monitoring of life cycles of plants. High-resolution unmanned aerial vehicles (UAVs) and near-surface technologies have been used for plant monitoring, demanding the creation of methods capable of locating, and identifying plant species through time and space. However, this is a challenging task given the high volume of data, the constant data missing from temporal dataset, the heterogeneity of temporal profiles, the variety of plant visual patterns, and the unclear definition of individuals' boundaries in plant communities. In this letter, we propose a novel method, suitable for phenological monitoring, based on convolutional networks (ConvNets) to perform spatio-temporal vegetation pixel classification on high-resolution images. We conducted a systematic evaluation using high-resolution vegetation image datasets associated with the Brazilian Cerrado biome. Experimental results show that the proposed approach is effective, overcoming other spatio-temporal pixel-classification strategies

    A Change-Driven Image Foveation Approach for Tracking Plant Phenology

    Get PDF
    One of the challenges in remote phenology studies lies in how to efficiently manage large volumes of data obtained as long-term sequences of high-resolution images. A promising approach is known as image foveation, which is able to reduce the computational resources used (i.e., memory storage) in several applications. In this paper, we propose an image foveation approach towards plant phenology tracking where relevant changes within an image time series guide the creation of foveal models used to resample unseen images. By doing so, images are taken to a space-variant domain where regions vary in resolution according to their contextual relevance for the application. We performed our validation on a dataset of vegetation image sequences previously used in plant phenology studies

    Relationship between tropical leaf phenology and ecosystem productivity using phenocameras

    Get PDF
    Introduction: The interplay of water and light, regarded as the main driver of tropical plant dynamics, determines leaf phenology and ecosystem productivity. Leaf phenology has been discussed as a key variable to explain photosynthetic seasonality in evergreen tropical forests, but the question is still open for seasonally tropical ecosystems. In the search for implementing long-term phenology monitoring in the tropics, phenocameras have proven to be an accurate method to estimate vegetative phenology in tropical communities. Here, we investigated the temporal patterns of leaf phenology and their relation to gross primary productivity (GPP) in a comparative study across three contrasting tropical biomes: dry forest (caatinga), woodland savanna (cerrado), and rainforest (Atlantic Forest).Methods: We monitored leaf phenology (phenocameras) and estimated gross primary productivity (eddy-covariance) continuously over time at three study sites. We investigated the main drivers controlling leaf phenology and tested the performance of abiotic (climate) and biotic (phenology) factors to explain gross primary productivity across sites.Results: We found that camera-derived indices presented the best relationships with gross primary productivity across all sites. Gross primary productivity seasonality was controlled by a gradient of water vs. light, where caatinga dry forest was water-limited, cerrado vegetation responded to water seasonality and light, and rainforest was mainly controlled by light availability. Vegetation phenology was tightly associated with productivity in the driest ecosystem (caatinga), where productivity was limited to the wet season, and the camera-derived index (Gcc) was the best proxy for gross primary productivity.Discussion: Leaf phenology increased their relative importance over gross primary productivity seasonality at less seasonal sites (cerrado and rainforest), where multiple leafing strategies influenced carbon exchanges. Our multi-site comparison, along with fine-scale temporal observations of leaf phenology and gross primary productivity patterns, uncovered the relationship between leafing and productivity across tropical ecosystems under distinct water constraints

    Fruiting phenology in the Neotropics

    No full text
    Changes in the life cycle of organisms (i.e. phenology) are one of the most widely used early-warning indicators of climate change, yet this remains poorly understood throughout the tropics. We exhaustively reviewed any published and unpublished study on fruiting phenology carried out at the community level in the American tropics and subtropics (latitudinal range: 26°N?26°S) to (1) provide a comprehensive overview of the current status of fruiting phenology research throughout the Neotropics; (2) unravel the climatic factors that have been widely reported as drivers of fruiting phenology; and (3) provide a preliminary assessment of the potential phenological responses of plants under future climatic scenarios. Despite the large number of phenological datasets uncovered (218), our review shows that their geographic distribution is very uneven and insufficient for the large surface of the Neotropics (~ 1 dataset per ~ 78,000 km2). Phenological research is concentrated in few areas with many studies (state of São Paulo, Brazil, and Costa Rica), whereas vast regions elsewhere are entirely unstudied. Sampling effort in fruiting phenology studies was generally low: the majority of datasets targeted fewer than 100 plant species (71%), lasted 2 years or less (72%), and only 10.4% monitored > 15 individuals per species. We uncovered only 10 sites with ten or more years of phenological monitoring. The ratio of numbers of species sampled to overall estimates of plant species richness was wholly insufficient for highly diverse vegetation types such as tropical rainforests, seasonal forest and cerrado, and only slightly more robust for less diverse vegetation types, such as deserts, arid shrublands and open grassy savannas. Most plausible drivers of phenology extracted from these datasets were environmental (78.5%), whereas biotic drivers were rare (6%). Among climatic factors, rainfall was explicitly included in 73.4% of cases, followed by air temperature (19.3%). Other environmental cues such as water level (6%), solar radiation or photoperiod (3.2%), and ENSO events (1.4%) were rarely addressed. In addition, drivers were analyzed statistically in only 38% of datasets and techniques were basically correlative, with only 4.8% of studies including any consideration of the inherently autocorrelated character of phenological time series. Fruiting peaks were significantly more often reported during the rainy season both in rainforests and cerrado woodlands, which is at odds with the relatively aseasonal character of the former vegetation type. Given that climatic models predict harsh future conditions for the tropics, we urgently need to determine the magnitude of changes in plant reproductive phenology and distinguish those from cyclical oscillations. Long-term monitoring and herbarium data are therefore key for detecting these trends. Our review shows that the unevenness in geographic distribution of studies, and diversity of sampling methods, vegetation types, and research motivation hinder the emergence of clear general phenological patterns and drivers for the Neotropics. We therefore call for prioritizing research in unexplored areas, and improving the quantitative component and statistical design of reproductive phenology studies to enhance our predictions of climate change impacts on tropical plants and animals

    Modularity, pollination systems, and interaction turnover in plant-pollinator networks across space

    No full text
    Made available in DSpace on 2018-12-11T17:37:09Z (GMT). No. of bitstreams: 0 Previous issue date: 2016-05-01Mutualistic interaction networks have been shown to be structurally conserved over space and time while pairwise interactions show high variability. In such networks, modularity is the division of species into compartments, or modules, where species within modules share more interactions with each other than they do with species from other modules. Such a modular structure is common in mutualistic networks and several evolutionary and ecological mechanisms have been proposed as underlying drivers. One prominent explanation is the existence of pollination syndromes where fl owers tend to attract certain pollinators as determined by a set of traits. We investigate the modularity of seven community level plant-pollinator networks sampled in rupestrian grasslands, or campos rupestres, in SE Brazil. Defi ning pollination systems as corresponding groups of fl ower syndromes and pollinator functional groups, we test the two hypotheses that (1) interacting species from the same pollination system are more often assigned to the same module than interacting species from different pollination systems and; that (2) interactions between species from the same pollination system are more consistent across space than interactions between species from different pollination systems. Specifi cally we ask (1) whether networks are consistently modular across space; (2) whether interactions among species of the same pollination system occur more often inside modules, compared to interactions among species of different pollination systems, and fi nally; (3) whether the spatial variation in interaction identity, i.e., spatial interaction rewiring, is affected by trait complementarity among species as indicated by pollination systems. We confi rm that networks are consistently modular across space and that interactions within pollination systems principally occur inside modules. Despite a strong tendency, we did not fi nd a signifi cant effect of pollination systems on the spatial consistency of pairwise interactions. These results indicate that the spatial rewiring of interactions could be constrained by pollination systems, resulting in conserved network structures in spite of high variation in pairwise interactions. Our fi ndings suggest a relevant role of pollination systems in structuring plant-pollinator networks and we argue that structural patterns at the sub-network level can help us to fully understand how and why interactions vary across space and time.Departamento de Botânica Laboratório de Fenologia Plant Phenology and Seed Dispersal Group Instituto de Biociências Universidade Estadual Paulista (UNESP), Avenida 24-A n 1515Center for Macroecology Evolution and Climate Natural History Museum of Denmark University of Copenhagen, Universitetsparken 15EEA (Estación Experimental Agropecuaria) Balcarce INTA (Instituto Nacional de Tecnología Agropecuaria)Departamento de Botânica Laboratório de Fenologia Plant Phenology and Seed Dispersal Group Instituto de Biociências Universidade Estadual Paulista (UNESP), Avenida 24-A n 151

    Modularity, pollination systems, and interaction turnover in plant‐pollinator networks across space

    Get PDF
    Mutualistic interaction networks have been shown to be structurally conserved over space and time while pairwise interactions show high variability. In such networks, modularity is the division of species into compartments, or modules, where species within modules share more interactions with each other than they do with species from other modules. Such a modular structure is common in mutualistic networks and several evolutionary and ecological mechanisms have been proposed as underlying drivers. One prominent explanation is the existence of pollination syndromes where flowers tend to attract certain pollinators as determined by a set of traits. We investigate the modularity of seven community level plant‐pollinator networks sampled in rupestrian grasslands, or campos rupestres, in SE Brazil. Defining pollination systems as corresponding groups of flower syndromes and pollinator functional groups, we test the two hypotheses that (1) interacting species from the same pollination system are more often assigned to the same module than interacting species from different pollination systems and; that (2) interactions between species from the same pollination system are more consistent across space than interactions between species from different pollination systems. Specifically we ask (1) whether networks are consistently modular across space; (2) whether interactions among species of the same pollination system occur more often inside modules, compared to interactions among species of different pollination systems, and finally; (3) whether the spatial variation in interaction identity, i.e., spatial interaction rewiring, is affected by trait complementarity among species as indicated by pollination systems. We confirm that networks are consistently modular across space and that interactions within pollination systems principally occur inside modules. Despite a strong tendency, we did not find a significant effect of pollination systems on the spatial consistency of pairwise interactions. These results indicate that the spatial rewiring of interactions could be constrained by pollination systems, resulting in conserved network structures in spite of high variation in pairwise interactions. Our findings suggest a relevant role of pollination systems in structuring plant‐pollinator networks and we argue that structural patterns at the sub‐network level can help us to fully understand how and why interactions vary across space and time.EEA BalcarceFil: Carstensen, Daniel W.. Universidade Estadual Paulista Julio de Mesquita Filho. Instituto de Biociências; Brasil. Universidad de Copenhagen. Natural History Museum of Denmark. Center for Macroecology, Evolution and Climate; DinamarcaFil: Sabatino, Malena. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Balcarce; Argentina.Fil: Morellato, Leonor Patricia C. Universidade Estadual Paulista Julio de Mesquita Filho. Instituto de Biociências; Brasil

    Beta diversity of plant-pollinator networks and the spatial turnover of pairwise interactions

    Get PDF
    <div><p>Interactions between species form complex networks that vary across space and time. Even without spatial or temporal constraints mutualistic pairwise interactions may vary, or rewire, across space but this variability is not well understood. Here, we quantify the beta diversity of species and interactions and test factors influencing the probability of turnover of pairwise interactions across space. We ask: 1) whether beta diversity of plants, pollinators, and interactions follow a similar trend across space, and 2) which interaction properties and site characteristics are related to the probability of turnover of pairwise interactions. Geographical distance was positively correlated with plant and interaction beta diversity. We find that locally frequent interactions are more consistent across space and that local flower abundance is important for the realization of pairwise interactions. While the identity of pairwise interactions is highly variable across space, some species-pairs form interactions that are locally frequent and spatially consistent. Such interactions represent cornerstones of interacting communities and deserve special attention from ecologists and conservation planners alike.</p></div
    corecore