683 research outputs found
Derecho internacional privado
Selección de novedades del semestre: Derecho internacional privad
The Chemical Composition and Age of the Metal-Poor Halo Star BD +17^\circ 3248
We have combined new high-resolution spectra obtained with the Hubble Space
Telescope (HST) and ground-based facilities to make a comprehensive new
abundance analysis of the metal-poor, halo star BD +17^\circ 3248. We have
detected the third r-process peak elements osmium, platinum, and (for the first
time in a metal-poor star) gold, elements whose abundances can only be reliably
determined using HST. Our observations illustrate a pattern seen in other
similar halo stars with the abundances of the heavier neutron-capture elements,
including the third r-process peak elements, consistent with a scaled solar
system r-process distribution. The abundances of the lighter neutron-capture
elements, including germanium and silver, fall below that same scaled solar
r-process curve, a result similar to that seen in the ultra-metal-poor star CS
22892--052. A single site with two regimes or sets of conditions, or perhaps
two different sites for the lighter and heavier neutron-capture elements, might
explain the abundance pattern seen in this star. In addition we have derived a
reliable abundance for the radioactive element thorium. We tentatively identify
U II at 3859 A in the spectrum of BD +17^\circ 3248, which makes this the
second detection of uranium in a very metal-poor halo star. Our combined
observations cover the widest range in proton number (from germanium to
uranium) thus far of neutron-capture elements in metal-poor Galactic halo
stars. Employing the thorium and uranium abundances in comparison with each
other and with several stable elements, we determine an average
cosmochronological age for BD +17^\circ 3248 of 13.8 +/- 4 Gyr, consistent with
that found for other similar metal-poor halo stars.Comment: 58 pages, 4 tables, 11 figures; To appear in ApJ Typo correcte
Allelic variants of the amylose extender mutation of maize demonstrate phenotypic variation in starch structure resulting from modified protein–protein interactions
amylose extender (ae−) starches characteristically have modified starch granule morphology resulting from amylopectin with reduced branch frequency and longer glucan chains in clusters, caused by the loss of activity of the major starch branching enzyme (SBE), which in maize endosperm is SBEIIb. A recent study with ae− maize lacking the SBEIIb protein (termed ae1.1 herein) showed that novel protein–protein interactions between enzymes of starch biosynthesis in the amyloplast could explain the starch phenotype of the ae1.1 mutant. The present study examined an allelic variant of the ae− mutation, ae1.2, which expresses a catalytically inactive form of SBEIIb. The catalytically inactive SBEIIb in ae1.2 lacks a 28 amino acid peptide (Val272–Pro299) and is unable to bind to amylopectin. Analysis of starch from ae1.2 revealed altered granule morphology and physicochemical characteristics distinct from those of the ae1.1 mutant as well as the wild-type, including altered apparent amylose content and gelatinization properties. Starch from ae1.2 had fewer intermediate length glucan chains (degree of polymerization 16–20) than ae1.1. Biochemical analysis of ae1.2 showed that there were differences in the organization and assembly of protein complexes of starch biosynthetic enzymes in comparison with ae1.1 (and wild-type) amyloplasts, which were also reflected in the composition of starch granule-bound proteins. The formation of stromal protein complexes in the wild-type and ae1.2 was strongly enhanced by ATP, and broken by phosphatase treatment, indicating a role for protein phosphorylation in their assembly. Labelling experiments with [γ-32P]ATP showed that the inactive form of SBEIIb in ae1.2 was phosphorylated, both in the monomeric form and in association with starch synthase isoforms. Although the inactive SBEIIb was unable to bind starch directly, it was strongly associated with the starch granule, reinforcing the conclusion that its presence in the granules is a result of physical association with other enzymes of starch synthesis. In addition, an Mn2+-based affinity ligand, specific for phosphoproteins, was used to show that the granule-bound forms of SBEIIb in the wild-type and ae1.2 were phosphorylated, as was the granule-bound form of SBEI found in ae1.2 starch. The data strongly support the hypothesis that the complement of heteromeric complexes of proteins involved in amylopectin synthesis contributes to the fine structure and architecture of the starch granule
The asialoglycoprotein receptor in human hepatocellular carcinomas: its expression on proliferating cells
The expression of the asialoglycoprotein receptor (ASGP-R) on human hepatocellular carcinoma (HCC) cells might be exploited to reduce the extrahepatic toxicity of DNA synthesis inhibitors by their conjugation with galactosyl-terminating peptides. In the present study we first assessed the frequency of ASGP-R expression in 60 HCCs. Secondly, we investigated whether the receptor was maintained on the plasma membranes of DNA synthesizing cancer cells. Needle biopsies of HCC were evaluated. Diagnosis and grading of HCC were performed on routine haematoxylin and eosin-stained sections according to Edmondson and Steiner (1953). Thirty-five tumours were grade I and II and were classified as well differentiated, while 25 tumours were grade III and IV and were classified as poorly differentiated. Sections from formalin-fixed, paraffin-embedded samples were incubated, after antigen retrieval, with an anti-ASGP-R monoclonal antibody revealed by secondary biotinylated antibody and streptavidin–biotin–peroxidase–diaminobenzidine reaction. A clear immunolabelling of plasma membranes of HCC cells was observed in 28 out of 35 (80%) well differentiated (grade I and II) and in five out of 25 (20%) poorly differentiated (grade III and IV) HCCs. The presence of the ASGP-R on the surface of DNA synthesizing cancer cells was also investigated after in vitro bromodeoxyuridine (BrdU) labelling of HCC samples by immunohistochemical visualization of both the ASGP-R and incorporated BrdU on the same section. The results obtained clearly demonstrated that DNA synthesizing cancer cells expressed the ASGP-R on their surface. The presence of ASGP-R on cell plasma membrane in the majority of differentiated HCCs and its maintenance on proliferating cells encourages studies in order to restrict the action of the inhibitors of DNA synthesis of HCC cells by their conjugation with galactosyl-terminating carriers internalized through this receptor. © 1999 Cancer Research Campaig
Primary demyelination induced by exposure to tellurium alters Schwann cell gene expression: a model for intracellular targeting of NGF receptor
Exposure of developing rats to tellurium results in a highly synchronous segmental demyelination of peripheral nerves with sparing of axons; this demyelination is followed closely by a period of rapid remyelination. Demyelination occurs subsequent to a tellurium-induced block in the synthesis of cholesterol, the major myelin lipid. We utilized the techniques of Northern blotting, in situ hybridization, and immunocytochemistry to examine temporal alterations in Schwann cell gene expression related to demyelination and remyelination. Tellurium- induced demyelination is associated with downregulation of myelin protein expression and a corresponding upregulation of NGF receptor (NGF-R) and glial fibrillary acidic protein (GFAP) expression. Steady- state mRNA levels (expressed on a “per nerve” basis) for P0, the major myelin protein, were decreased by about 50% after 5 d of tellurium exposure, while levels of mRNA for NGF-R and GFAP were markedly increased (about 15-fold). In situ hybridization of teased fibers suggested that the increase in steady-state mRNA levels for NGF-R was primarily associated with demyelinated internodes and not with adjacent unaffected internodes. Although P0 message was almost totally absent from demyelinating internodes, it was also reduced in normal-appearing internodes as well. This suggests that limiting the supply of a required membrane component (cholesterol) may lead to partial downregulation of myelin gene expression in all myelinating Schwann cells. In partially demyelinated internodes, NGF-R and GFAP immunofluorescence appeared largely confined to the demyelinated regions. This suggests specific targeting of these proteins to local areas of the Schwann cell where there is myelin loss. These results demonstrate that demyelination is associated with reversion of the affected Schwann cells to a precursor cell phenotype. Because axons remain intact, our results suggest that these changes in Schwann cell gene expression do not require input from a degenerating axon, but instead may depend on whether concerted synthesis of myelin is occurring
The Luminosity and Mass Functions of Low-Mass Stars in the Galactic Disk: I. The Calibration Region
We present measurements of the luminosity and mass functions of low-mass
stars constructed from a catalog of matched Sloan Digital Sky Survey (SDSS) and
2 Micron All Sky Survey (2MASS) detections. This photometric catalog contains
more than 25,000 matched SDSS and 2MASS point sources spanning ~30 square
degrees on the sky. We have obtained follow-up spectroscopy, complete to J=16,
of more than 500 low mass dwarf candidates within a 1 square degree sub-sample,
and thousands of additional dwarf candidates in the remaining 29 square
degrees. This spectroscopic sample verifies that the photometric sample is
complete, uncontaminated, and unbiased at the 99% level globally, and at the
95% level in each color range. We use this sample to derive the luminosity and
mass functions of low-mass stars over nearly a decade in mass (0.7 M_sun > M_*
> 0.1 M_sun). We find that the logarithmically binned mass function is best fit
with an M_c=0.29 log-normal distribution, with a 90% confidence interval of
M_c=0.20--0.50. These 90% confidence intervals correspond to linearly binned
mass functions peaking between 0.27 M_sun and 0.12 M_sun, where the best fit MF
turns over at 0.17 M_sun. A power law fit to the entire mass range sampled
here, however, returns a best fit of alpha=1.1 (where the Salpeter slope is
alpha = 2.35). These results agree well with most previous investigations,
though differences in the analytic formalisms adopted to describe those mass
functions can give the false impression of disagreement. Given the richness of
modern-day astronomical datasets, we are entering the regime whereby stronger
conclusions can be drawn by comparing the actual datapoints measured in
different mass functions, rather than the results of analytic analyses that
impose structure on the data a priori. (abridged)Comment: Accepted for publication in the Astronomical Journal. 21 pages,
emulateapj format, 12 figures. Figures 1, 4, 11 and 12 degraded for astroph;
full resolution version available for download at
http://www.cfa.harvard.edu/~kcovey
Electron quantum metamaterials in van der Waals heterostructures
In recent decades, scientists have developed the means to engineer synthetic
periodic arrays with feature sizes below the wavelength of light. When such
features are appropriately structured, electromagnetic radiation can be
manipulated in unusual ways, resulting in optical metamaterials whose function
is directly controlled through nanoscale structure. Nature, too, has adopted
such techniques -- for example in the unique coloring of butterfly wings -- to
manipulate photons as they propagate through nanoscale periodic assemblies. In
this Perspective, we highlight the intriguing potential of designer
sub-electron wavelength (as well as wavelength-scale) structuring of electronic
matter, which affords a new range of synthetic quantum metamaterials with
unconventional responses. Driven by experimental developments in stacking
atomically layered heterostructures -- e.g., mechanical pick-up/transfer
assembly -- atomic scale registrations and structures can be readily tuned over
distances smaller than characteristic electronic length-scales (such as
electron wavelength, screening length, and electron mean free path). Yet
electronic metamaterials promise far richer categories of behavior than those
found in conventional optical metamaterial technologies. This is because unlike
photons that scarcely interact with each other, electrons in subwavelength
structured metamaterials are charged, and strongly interact. As a result, an
enormous variety of emergent phenomena can be expected, and radically new
classes of interacting quantum metamaterials designed
ATLAS Beam Steering Mechanism (BSM) Lessons Learned
This paper describes the design, testing, and lessons learned during the development of the Advanced Topographic Laser Altimeter System (ATLAS) Beam Steering Mechanism (BSM). The BSM is a 2 degree-of-freedom tip-tilt mechanism for the purpose of pointing a flat mirror to tightly control the co-alignment of the transmitted laser and the receiver telescope of the ATLAS instrument. The high resolution needs of the mission resulted in sub-arcsecond pointing and knowledge requirements, which have been met. Development of the methodology to verify performance required significant effort. The BSM will fly as part of the Ice, Cloud, and Elevation Satellite II Mission (ICESat II), which is scheduled to be launched in 2017. The ICESat II primary mission is to map the Earth's surface topography for the determination of seasonal changes of ice sheet thickness and vegetation canopy thickness to establish long-term trends
Imaging Electronic Correlations in Twisted Bilayer Graphene near the Magic Angle
Twisted bilayer graphene with a twist angle of around 1.1{\deg} features a
pair of isolated flat electronic bands and forms a strongly correlated
electronic platform. Here, we use scanning tunneling microscopy to probe local
properties of highly tunable twisted bilayer graphene devices and show that the
flat bands strongly deform when aligned with the Fermi level. At half filling
of the bands, we observe the development of gaps originating from correlated
insulating states. Near charge neutrality, we find a previously unidentified
correlated regime featuring a substantially enhanced flat band splitting that
we describe within a microscopic model predicting a strong tendency towards
nematic ordering. Our results provide insights into symmetry breaking
correlation effects and highlight the importance of electronic interactions for
all filling factors in twisted bilayer graphene.Comment: Main text 9 pages, 4 figures; Supplementary Information 25 page
- …