7 research outputs found

    KRASG12C inhibition using MRTX1257: a novel radio-sensitizing partner

    No full text
    Abstract Background KRAS activating mutations are considered the most frequent oncogenic drivers and are correlated with radio-resistance in multiple cancers including non-small cell lung cancer (NSCLC) and colorectal cancer. Although KRAS was considered undruggable until recently, several KRAS inhibitors have recently reached clinical development. Among them, MRTX849 (Mirati Therapeutics) showed encouraging clinical outcomes for the treatment of selected patients with KRAS G12C mutated NSCLC and colorectal cancers. In this work, we explore the ability of MRTX1257, a KRASG12C inhibitor analogous to MRTX849, to radio-sensitize KRAS G12C+/+ mutated cell lines and tumors. Methods Both in vitro and in vivo models of radiotherapy (RT) in association with MRTX1257 were used, with different RAS mutational profiles. We assessed in vitro the radio-sensitizing effect of MRTX1257 in CT26 KRASG12C+/+, CT26 WT, LL2 WT and LL2 NRAS KO (LL2 NRAS−/−) cell lines. In vivo, we used syngeneic models of subcutaneous CT26 KRASG12C+/+ tumors in BALB/c mice and T cell deficient athymic nu/nu mice to assess both the radio-sensitizing effect of MRTX1257 and its immunological features. Results MRTX1257 was able to radio-sensitize CT26 KRASG12C+/+ cells in vitro in a time and dose dependent manner. Moreover, RT in association with MRTX1257 in BALB/c mice bearing CT26 KRASG12C+/+ subcutaneous tumors resulted in an observable cure rate of 20%. However, no durable response was observed with similar treatment in athymic nude mice. The analysis of the immune microenvironment of CT26 KRASG12C+/+ tumors following RT and MRTX1257 showed an increase in the proportion of various cell subtypes including conventional CD4 + T cells, dendritic cells type 2 (cDC2) and inflammatory monocytes. Furthermore, the expression of PD-L1 was dramatically down-regulated within both tumor and myeloid cells, thus illustrating the polarization of the tumor microenvironment towards a pro-inflammatory and anti-tumor phenotype following the combined treatment. Conclusion This work is the first to demonstrate in vitro as in vivo the radio-sensitizing effect of MRTX1257, a potent KRASG12C inhibitor compatible with oral administration, in CT26 KRASG12C mutated cell lines and tumors. This is a first step towards the use of new combinatorial strategies using KRAS inhibitors and RT in KRASG12C mutated tumors, which are the most represented in NSCLC with 14% of patients harboring this mutational profile

    Otorhinolaryngological Toxicities of New Drugs in Oncology

    No full text
    <p><strong>Article full text</strong></p> <p><br> The full text of this article can be found <a href="https://link.springer.com/article/10.1007/s12325-017-0512-0"><b>here</b>.</a><br> <br> <strong>Provide enhanced digital features for this article</strong><br> If you are an author of this publication and would like to provide additional enhanced digital features for your article then please contact <u>[email protected]</u>.<br> <br> The journal offers a range of additional features designed to increase visibility and readership. All features will be thoroughly peer reviewed to ensure the content is of the highest scientific standard and all features are marked as ‘peer reviewed’ to ensure readers are aware that the content has been reviewed to the same level as the articles they are being presented alongside. Moreover, all sponsorship and disclosure information is included to provide complete transparency and adherence to good publication practices. This ensures that however the content is reached the reader has a full understanding of its origin. No fees are charged for hosting additional open access content.<br> <br> Other enhanced features include, but are not limited to:<br> ‱ Slide decks<br> ‱ Videos and animations<br> ‱ Audio abstracts<br> ‱ Audio slides<u></u></p

    La déficience de PBRM1 confÚre une létalité synthétique aux inhibiteurs de la réparation de l'ADN dans le cancer

    No full text
    International audienceInactivation of Polybromo 1 (PBRM1), a specific subunit of the PBAF chromatin remodeling complex, occurs frequently in cancer, including 40% of clear cell renal cell carcinomas (ccRCC). To identify novel therapeutic approaches to targeting PBRM1-defective cancers, we used a series of orthogonal functional genomic screens that identified PARP and ATR inhibitors as being synthetic lethal with PBRM1 deficiency. The PBRM1/PARP inhibitor synthetic lethality was recapitulated using several clinical PARP inhibitors in a series of in vitro model systems and in vivo in a xenograft model of ccRCC. In the absence of exogenous DNA damage, PBRM1-defective cells exhibited elevated levels of replication stress, micronuclei, and R-loops. PARP inhibitor exposure exacerbated these phenotypes. Quantitative mass spectrometry revealed that multiple R-loop processing factors were downregulated in PBRM1-defective tumor cells. Exogenous expression of the R-loop resolution enzyme RNase H1 reversed the sensitivity of PBRM1-deficient cells to PARP inhibitors, suggesting that excessive levels of R-loops could be a cause of this synthetic lethality. PARP and ATR inhibitors also induced cyclic GMP-AMP synthase/stimulator of interferon genes (cGAS/STING) innate immune signaling in PBRM1-defective tumor cells. Overall, these findings provide the preclinical basis for using PARP inhibitors in PBRM1-defective cancers. SIGNIFICANCE: This study demonstrates that PARP and ATR inhibitors are synthetic lethal with the loss of PBRM1, a PBAF-specific subunit, thus providing the rationale for assessing these inhibitors in patients with PBRM1-defective cancer.L'inactivation de Polybromo 1 (PBRM1), une sous-unitĂ© spĂ©cifique du complexe de remodelage de la chromatine PBAF, se produit frĂ©quemment dans le cancer, y compris dans 40% des carcinomes rĂ©naux Ă  cellules claires (ccRCC). Afin d'identifier de nouvelles approches thĂ©rapeutiques pour cibler les cancers dĂ©ficients en PBRM1, nous avons utilisĂ© une sĂ©rie de cribles gĂ©nomiques fonctionnels orthogonaux qui ont identifiĂ© les inhibiteurs PARP et ATR comme Ă©tant synthĂ©tiquement lĂ©taux en cas de dĂ©ficience en PBRM1. La lĂ©talitĂ© synthĂ©tique des inhibiteurs de PBRM1/PARP a Ă©tĂ© rĂ©capitulĂ©e en utilisant plusieurs inhibiteurs cliniques de PARP dans une sĂ©rie de systĂšmes modĂšles in vitro et in vivo dans un modĂšle de xĂ©nogreffe de ccRCC. En l'absence de lĂ©sions exogĂšnes de l'ADN, les cellules dĂ©ficientes en PBRM1 prĂ©sentaient des niveaux Ă©levĂ©s de stress de rĂ©plication, de micronoyaux et de boucles R. L'exposition Ă  un inhibiteur de PARP a exacerbĂ© la lĂ©talitĂ© synthĂ©tique. L'exposition Ă  un inhibiteur de PARP a exacerbĂ© ces phĂ©notypes. La spectromĂ©trie de masse quantitative a rĂ©vĂ©lĂ© que plusieurs facteurs de traitement des boucles R Ă©taient rĂ©gulĂ©s Ă  la baisse dans les cellules tumorales dĂ©fectueuses de PBRM1. L'expression exogĂšne de l'enzyme de rĂ©solution des boucles R, la RNase H1, a inversĂ© la sensibilitĂ© des cellules PBRM1 dĂ©ficientes aux inhibiteurs de la PARP, ce qui suggĂšre que des niveaux excessifs de boucles R pourraient ĂȘtre une cause de cette lĂ©talitĂ© synthĂ©tique. Les inhibiteurs de PARP et d'ATR ont Ă©galement induit une signalisation immunitaire innĂ©e de type GMP cyclique-AMP synthase/stimulateur des gĂšnes de l'interfĂ©ron (cGAS/STING) dans les cellules tumorales dĂ©ficientes en PBRM1. Dans l'ensemble, ces rĂ©sultats fournissent une base prĂ©clinique pour l'utilisation des inhibiteurs de PARP dans les cancers dĂ©ficients en PBRM1. SIGNIFICATION : Cette Ă©tude dĂ©montre que les inhibiteurs de PARP et d'ATR sont synthĂ©tiquement lĂ©taux en cas de perte de PBRM1, une sous-unitĂ© spĂ©cifique du PBAF, ce qui justifie l'Ă©valuation de ces inhibiteurs chez les patients atteints d'un cancer dĂ©ficient en PBRM1

    Episignatures in practice: independent evaluation of published episignatures for the molecular diagnostics of ten neurodevelopmental disorders

    No full text
    Variants of uncertain significance (VUS) are a significant issue for the molecular diagnosis of rare diseases. The publication of episignatures as effective biomarkers of certain Mendelian neurodevelopmental disorders has raised hopes to help classify VUS. However, prediction abilities of most published episignatures have not been independently investigated yet, which is a prerequisite for an informed and rigorous use in a diagnostic setting. We generated DNA methylation data from 101 carriers of (likely) pathogenic variants in ten different genes, 57 VUS carriers, and 25 healthy controls. Combining published episignature information and new validation data with a k-nearest-neighbour classifier within a leave-one-out scheme, we provide unbiased specificity and sensitivity estimates for each of the signatures. Our procedure reached 100% specificity, but the sensitivities unexpectedly spanned a very large spectrum. While ATRX, DNMT3A, KMT2D , and NSD1 signatures displayed a 100% sensitivity, CREBBP-RSTS and one of the CHD8 signatures reached <40% sensitivity on our dataset. Remaining Cornelia de Lange syndrome, KMT2A , KDM5C and CHD7 signatures reached 70–100% sensitivity at best with unstable performances, suffering from heterogeneous methylation profiles among cases and rare discordant samples. Our results call for cautiousness and demonstrate that episignatures do not perform equally well. Some signatures are ready for confident use in a diagnostic setting. Yet, it is imperative to characterise the actual validity perimeter and interpretation of each episignature with the help of larger validation sample sizes and in a broader set of episignatures
    corecore