95 research outputs found

    Dissection of Saccharomyces Cerevisiae Asci

    Get PDF
    Yeast is a highly tractable model system that is used to study many different cellular processes. The common laboratory strain Saccharomyces cerevisiae exists in either a haploid or diploid state. The ability to combine alleles from two haploids and the ability to introduce modifications to the genome requires the production and dissection of asci. Asci production from haploid cells begins with the mating of two yeast haploid strains with compatible mating types to produce a diploid strain. This can be accomplished in a number of ways either on solid medium or in liquid. It is advantageous to select for the diploids in medium that selectively promotes their growth compared to either of the haploid strains. The diploids are then allowed to sporulate on nutrient-poor medium to form asci, a bundle of four haploid daughter cells resulting from meiotic reproduction of the diploid. A mixture of vegetative cells and asci is then treated with the enzyme zymolyase to digest away the membrane sac surrounding the ascospores of the asci. Using micromanipulation with a microneedle under a dissection microscope one can pick up individual asci and separate and relocate the four ascopores. Dissected asci are grown for several days and tested for the markers or alleles of interest by replica plating onto appropriate selective media

    Transmission Electron Microscopy for the Characterization of Cellulose Nanocrystals

    Get PDF
    Cellulose nanocrystals (CNCs) are high aspect ratio nanomaterials readily obtained from cellulose microfibrils via strong acid hydrolysis. They feature unique properties stemming from their surface chemistry, their crystallinity, and their three-dimensional structure. CNCs have been exploited in a number of applications such as optically active coatings, nanocomposite materials, or aerogels. CNC size and shape determination is an important challenge and transmission electron microscopy (TEM) is one of the most powerful tools to achieve this goal. Because of the specifics of TEM imaging, CNCs require special attention. They have a low density, are highly susceptible to electron beam damage, and easily aggregate. Specific techniques for both imaging and sampling have been developed over the past decades. In this review, we describe the CNCs, their properties, their applications, and the need for a precise characterization of their morphology and size distribution. We also describe in detail the techniques used to record quality images of CNCs. Finally, we survey the literature to provide readers with specific examples of TEM images of CNCs

    The CO/PC analogy in coordination chemistry and catalysis

    No full text
    9 pagesThis short account summarizes recent results obtained in the coordination chemistry of phosphinines and emphasizes their analogy with CO ligands. Reduced complexes can be easily assembled through the reaction of reduced 2,2'-biphosphinine dianions with transition metal fragments. Theoretical calculations were performed to establish the oxidation state of the metal in these complexes. Though many reduced complexes are available, phosphinines proved to be too sensitive toward nucleophiles to be used as efficient ligands in most catalytic processes. However, the high electrophilicity of the phosphorus atom can be exploited to synthesize phosphacylohexadienyl anions which exhibit a surprising coordination chemistry. When phosphino sulfide groups are incorporated as ancillary tridentate anionic SPS ligands can be easily produced. These ligands can bind different transition metal fragments such as M-X (M = group 10 metal, X = halogen), Rh-L (L = 2 electron donor ligand), Cu-X and Au-X (X = halogen). Palladium(II) complexes proved to be active catalyst in the Miyaura cross-coupling reaction. Bidentate anionic PS ligands were also synthesized following a similar approach. Their Pd(II) (allyl) derivatives showed a very good activity in the Suzuki catalyzed cross-coupling process that allows the synthesis of biphenyl derivatives through the reaction of phenylboronic acid with bromoarenes

    Mechanochemical bottom-up synthesis of phosphorus-linked, heptazine-based carbon nitrides using sodium phosphide

    Get PDF
    Herein, we present the bottom-up, mechanochemical synthesis of phosphorus-bridged heptazine-based carbon nitrides (g-h-PCN). The structure of these materials was determined through a combination of powder X-ray diffraction (PXRD), X-ray photoelectron spectroscopy (XPS), 31P magic angle spinning nuclear magnetic resonance (MAS NMR), density functional theory (DFT) and electron energy loss spectroscopy (EELS). Compared to traditional furnace-based techniques, the presented method utilizes milder conditions, as well as shorter reaction times. Both samples of g-h-PCN directly after milling and aging and after an hour of annealing at 300 °C (g-h-PCN300) show a reduction in photoluminescent recombination, as well as a nearly two-time increase in photocurrent under broad spectrum irradiation, which are appealing properties for photocatalysis

    Effects of antiplatelet therapy on stroke risk by brain imaging features of intracerebral haemorrhage and cerebral small vessel diseases: subgroup analyses of the RESTART randomised, open-label trial

    Get PDF
    Background Findings from the RESTART trial suggest that starting antiplatelet therapy might reduce the risk of recurrent symptomatic intracerebral haemorrhage compared with avoiding antiplatelet therapy. Brain imaging features of intracerebral haemorrhage and cerebral small vessel diseases (such as cerebral microbleeds) are associated with greater risks of recurrent intracerebral haemorrhage. We did subgroup analyses of the RESTART trial to explore whether these brain imaging features modify the effects of antiplatelet therapy
    corecore