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Herein, we present the bottom-up, mechanochemical synthesis of phosphorus-bridged heptazine-based carbon nitrides (g-h-PCN).

The structure of these materials was determined through a combination of powder X-ray diffraction (PXRD), X-ray photoelectron

spectroscopy (XPS), 3!P magic angle spinning nuclear magnetic resonance (MAS NMR), density functional theory (DFT) and elec-

tron energy loss spectroscopy (EELS). Compared to traditional furnace-based techniques, the presented method utilizes milder

conditions, as well as shorter reaction times. Both samples of g-h-PCN directly after milling and aging and after an hour of

annealing at 300 °C (g-h-PCN300) show a reduction in photoluminescent recombination, as well as a nearly two-time increase in

photocurrent under broad spectrum irradiation, which are appealing properties for photocatalysis.

Introduction

The development of heteroatom-doped graphitic carbon nitrides
(g-CN) has been a rapidly growing area of research since their
first report towards water splitting in 2009 [1]. Since that time,
the addition of elements such as boron [2], phosphorus [3-5],

sulfur and oxygen [6] have shown to help minimize the bandgap

of these metal-free photocatalysts, as well as improve their
overall stability. Traditional routes to incorporate phosphorus
have relied on high-temperature [7] or microwave [8] syntheses,
and often proceed through the introduction of a phosphorus

atom within the heptazine ring, which constitutes the building
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block of g-CN, as opposed to in a linking position. Computa-
tional studies by Hartley and Martsinovich have investigated the
influence of various linkers, including phosphorus atoms, on
both the structure and optical behavior of heptazine-based
graphitic carbon nitrides [3]. Yet, examples of carbon nitride
materials linked together via phosphorus atoms are limited,
likely due to challenges in controlling the insertion of phos-
phorus atoms as linkers under high energy conditions.
Mechanochemistry [9-12] has proven to be effective for the
synthesis of a variety of polymers [13-17], nanomaterials [18-
22], in crystal engineering [23-25], as well as in the synthesis of
inorganic materials [26-30] and organic small molecules [31-
37]. The ability to avoid bulk solvent and mild reaction condi-
tions allowed by such techniques are beneficial not only from a
green chemistry perspective [11], but they also afford condi-
tions conducive to new reactivities and the development of
novel materials [9]. Previously, we have explored the synthesis
of phosphorus-bridged g-CN-type materials produced from a
triazine unit and found that the resulting material featured good
photochemical properties (Scheme 1) [38]. Yet, conventional
g-CN materials are not based on triazine units, but rather on
heptazine ones, thus featuring more open structures. In an effort
to replicate a structure closer to known g-CN systems, we
explored herein the use of solvent-free, room temperature
mechanochemistry to access phosphorus-linked carbon nitride
with repeating heptazine units, which were found to show im-
proved photochemistry over pristine graphitic carbon nitride
(g-CN). Additionally, the effect of a 1-hour annealing period at
300 °C on the overall structure and photochemical properties of
the material was investigated.

Results and Discussion
Employing a similar method to the one previously developed by

our group (Scheme la) [38], equimolar amounts of sodium

Beilstein J. Org. Chem. 2022, 18, 1203—-1209.

phosphide (Na3P) and trichloroheptazine were combined in a
vibrational ball mill and milled at 30 Hz for 90 minutes under
an argon atmosphere (Scheme 1b). As trichloroheptazine was
not readily available commercially, it was synthesized from
melem in three steps following a known procedure (see Sup-
porting Information File 1 for the detailed procedure) [4]. The
milled powder was then allowed to age under an argon atmo-
sphere for 24 hours, prior to washing via centrifugation in a 3:1
by volume mixture of ethanol and deionized (DI) water. This
afforded a material referred to below as g-h-PCN. Alternatively,
the sample was annealed for 1 hour at 300 °C under a flow of
argon gas, affording the material designated g-h-PCN300.

Powder X-ray diffraction (PXRD)

To confirm the formation of a layered structure, powder X-ray
diffraction (PXRD) was performed on g-h-PCN and
g-h-PCN300 (Figure 1, green and teal). Both g-h-PCN and
g-h-PCN300 were largely amorphous but showed two broad
Bragg reflections at 20 = 16° and 28°. This suggests a high
thermal stability of the g-h-PCN structure, being formed during
the mild milling and aging conditions, with no need for

annealing.

X-ray photoelectron spectroscopy (XPS)

To gain insight into the atomic speciation within the structure
and establish phosphorus atoms are linkers between heptazine
units, X-ray photoelectron spectroscopy (XPS) was used to
probe the surface. In g-h-PCN, XPS scans focused on carbon 1s
showed three major peaks at 284.7, 286.4, and 288.6 eV, corre-
sponding to C=N, C-OH and C=0 signals, respectively
(Figure 2a), as well as a peak centered on 292.1 eV due to
charging effects [39]. The presence of C=N bonds established
by XPS indicates that the heptazine structure was preserved

during milling and aging with Na3P. Nitrogen 1s focused scans

cl P
Nop PN 1) & 30 Hz, 30 min, Ar N)xN
a) NaP + )N|\ )N\ 2) aging, 24 h, Ar . )|\ /)\ .
c” >N >ci 3)annealing, 300 °C PTONT P
CI ‘“spf"
A
N)*N 1)&30 Hz, 90 min, Ar N N
o) NaP o+ NNy 2aging 24h Ar LN
3) annealing, 300 °C |
| . .
Cl)\N/)\N/)\CI P)\N/)\N/)\P

Scheme 1: a) Mechanochemical synthesis of g-PCN from sodium phosphide and trichlorotriazine (previous work [38]) and b) g-h-PCN from sodium

phosphide and trichloroheptazine (this work).
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Figure 1: PXRD patterns of g-h-PCN (green) and g-h-PCN300 (teal).
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Figure 2: XPS scans of a) C 1s, b) N 1s and c) P 2p for the pre-annealed g-h-PCN and d) C 1s, e) N 1s and f) P 2p focused scans of g-h-PCN300

after annealing at 300 °C for 1 hour.

of g-h-PCN showed a 62% to 38% ratio of pyridinic to pyri-
donic-N type nitrogen environments, centered on 399.0 eV and
400.7 eV, respectively [16,40] (Figure 2b). This suggests that
while the majority of the heptazine ring remained pyridinic in
nature, partial reduction of the ring structure, due to the reduc-
tive nature of NazP and mild oxidation during ambient workup
following milling and aging, can also have occurred. Addition-
ally, the phosphorus 2p signal in g-h-PCN showed the majority
of phosphorus exists as a mixture of P=0 and P-O species, with
a major peak centered at 133.6 eV (69%, Figure 2c). These
species are formed by oxidation with air and hydrolysis upon
quenching in water and ethanol at the end of the aging step.

g-h-PCN300 featured the same three major carbon 1s peaks at
284.8, 286.2 and 288.2 eV for C=N/C=C, C=0 and C-OH
species, respectively, as well as the charging peak seen in
g-h-PCN. In g-h-PCN300, a reduction of the C=N ratio to 37%,
reduction of C=0 character from 21% to 18% compared to
g-h-PCN and an increase in C—OH character from 35% to 43%
suggests mild hydrolysis, likely of terminal trichloroheptazine,
during the annealing step at 300 °C, even under a flow of argon
gas (Figure 2d). The nitrogen 1s scans show a similar trend,
with the ratio of pyridinic and pyridone nitrogen being 68%
and 29%, respectively, compared to 62% and 38% in
g-h-PCN (Figure 2e). Phosphorus 2p focused scans of
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g-h-PCN300 showed a slight reduction in P-O and P=0 bond
character from g-h-PCN to g-h-PCN300 down from 69% to
66% (Figure 2f).

Analysis by infrared spectroscopy

The structural motifs seen through XPS were further validated
by Fourier-transform infrared attenuated total reflectance
(FTIR-ATR) spectroscopy. For g-h-PCN, the sharp absorption
band at 800 cm™! was indicative of the heptazine breathing
mode, typically seen for nitrogen- and phosphorus-linked C3Ny
materials (Supporting Information File 1, Figure S3, purple)
[41]. The retention of C=N bonds was also further supported
by the observation of a series of bands in the range of
1300-1800 cm™!. While the retention of the heptazine ring
structure was evident by FTIR-ATR, a low-intensity additional
signal at 950 cm™! is also seen, indicative of the formation of
P-C bonds [42], consistent with the results of XPS analysis
(Supporting Information File 1, Figure S3, teal). For the
g-h-PCN300 material, the overall spectrum showed similar
features to that of g-h-PCN, notably retaining the sharp
absorption band corresponding to the heptazine breathing mode
at 800 cm™!, while also retaining the characteristic P-C vibra-
tion at 950 cm™! (Supporting Information File 1, Figure S3,
green).

STEM-EELS analysis

The composition and particle morphology were investigated
further using scanning tunneling electron microscopy-electron
energy loss spectroscopy (STEM-EELS). The STEM-EELS
data for a g-h-PCN sample prior to annealing showed equal dis-
tribution of carbon and nitrogen with minimal phosphorus
present, and particles roughly 400 nm in length (Supporting
Information File 1, Figure S4a). Upon annealing at 300 °C for
1 hour under argon, the phosphorus content is shown to
increase, while still remaining partially localized, with the parti-

P, P, P,

100 50 0 -50

Chemical Shift / ppm

-100

b)
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cles retaining their size and morphology (Supporting Informa-
tion File 1, Figure S4b).

31P magic angle spinning (MAS) NMR

Bulk solid-state analysis of the heptazine-based materials
showed similar resonances to previous work by our group on
phosphorus-linked triazine networks [38]. The 3P MAS NMR
of g-h-PCN showed a broad resonance centered around
—8.9 ppm, with a sharp residual phosphate resonance at 0.9 ppm
(Figure 3a). NMR analysis of similar materials, by our group as
well as others, suggest that the broad resonance corresponds to
a largely amorphous phase with predominately phosphate and
phosphite-like environments, with the broad resonance at
—8.9 ppm possibly corresponding to hydrated sodium phos-
phate byproducts [43,44]. The NMR spectrum of the
g-h-PCN300 material showed an up-field shift of all main reso-
nances towards —14.4 ppm and —20.6 ppm (Figure 3b). As pre-
viously shown by our group [38], such a shift in main reso-
nance positioning is indicative of the organization of the formed

sheets, indicating a layered structure.

Computational analysis

The 3!'P NMR chemical shifts were calculated using the plane-
wave density function theory (DFT) code CASTEP v20.11 (see
Supporting Information File 1 for full computational details)
[45]. In the absence of an experimentally resolved crystal struc-
ture for g-h-PCN, we followed a similar methodology to our
previous work [38] of substituting bridging nitrogen atoms for
phosphorus in previously reported heptazine-based graphitic
carbon nitrides. We adapted the ab initio predicted structures for
a network of corrugated sheets [46] (Figure 4a and 4b) and
planar sheets (Figure 4c) [47]. Additionally, we modelled a
chlorine terminated monomeric unit based on an experimental-
ly resolved, nitrogen-bridged, paddlewheel structure (Figure 4d)
[48]. Calculations resulted in a single chemical environment for

P, P, Ps

100 50 0 -50 -100
Chemical Shift / ppm

Figure 3: 3'"P MAS NMR of a) g-h-PCN and b) g-h-PCN300. Asterisks denote spinning sidebands.
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Figure 4: Calculated structures for a) corrugated (edge facing), b) corrugated (single layer), c) layered g-h-PCN and d) phosphine paddlewheel.

the phosphorus atoms in the three model structures. The corru-
gated and planar network structures have calculated 3!P chemi-
cal shifts at 37.7 ppm (P;) and 23.3 ppm (P,), respectively,
while that of the paddlewheel monomer is at 11.2 ppm (P3). The
calculated shifts demonstrate phosphorus environments in the
mechanochemically synthesized material are distinct to those
calculated in ab initio predicted models of the pure reaction
product. The variations may be ascribed to the oxygen content
found by XPS (Figure 2) or that the mechanochemically synthe-
sized material exists in a different spatial configuration to those
previously predicted [46,47].

Thermal stability

Prior to annealing, g-h-PCN was found to show thermal
stability upwards of 200 °C through TGA in nitrogen and air
(Supporting Information File 1, Figures S6 and S7). The initial
loss seen for both samples is attributed to surface-bound water
and carbon dioxide. The g-h-PCN300 retains more mass to
upwards of 400 °C in both air and nitrogen, however, at higher
temperature (>500 °C), g-h-PCN shows an additional loss of
~5 wt % compared to g-h-PCN. Overall, under both air and
nitrogen, the g-h-PCN retains between 25-35% of its relative
mass, up to 800 °C.

Photochemical activity

The photochemical behavior of both g-h-PCN (Supporting
Information File 1, Figure S5a, blue trace) and g-h-PCN300
(Figure S5a, green) was investigated by diffuse reflectance
spectroscopy (DRS), and compared to that of a pure g-CN sam-
ple made by annealing melamine in a loosely capped alumina
crucible at 550 °C for 4 hours, with a ramp rate of 5 °C min™!
[49]. The g-CN material was found to exhibit an absorption
edge at ~425 nm (Figure S5a, purple), typical for polymerized
and graphitic heptazine materials [50,51]. Both phosphorus-
containing structures featured broadened absorption ranges

compared to g-CN, with g-h-PCN showing a red-shifted

maximum at ~572 nm (Figure S5a, blue) and g-h-PCN300
(Figure S5a, teal) showing a similar, also red-shifted maximum
at 525 nm. Additionally, photoluminescence (PL) measure-
ments showed an initially reduced absorption intensity for
g-h-PCN (Figure S5b, blue) compared to that of g-CN (Figure
S5b, purple) with further reduction notable in absorption for
g-h-PCN300 (Figure S5b, teal). This reduction in photolumines-
cence has previously been reported for phosphorus-doped
carbons and carbon nitrides [52], as the addition of Lewis basic
heteroatoms improves the stability of excitons, slowing the rate
of recombination. Time-resolved lifetimes showed a marked
increase upon replacement of the nitrogen linker for phos-
phorus. Nitrogen-linked g-CN showed exciton lifetimes of
4.2 ps, while the introduction of a phosphorus linker in
g-h-PCN increases the lifetime to 67 ps, with g-h-PCN300
showing lifetimes of 42 ps. We have also observed a similar
effect in triazine-based phosphorus-linked graphitic CN struc-
tures, with lifetimes of 4.7 and 39 us seen for g-PCN and
g-PCN300, respectively [38].

Improved charge transfer was further confirmed through
photocurrent and Nyquist measurements, comparing to pristine
g-CN. Photocurrent measurements showed an initial decrease
from 10 to =5 pA for g-h-PCN (Supporting Information File 1,
Figure S4c, blue) compared to pristine g-CN (Figure S4c,
purple) respectively after 250 s. The g-h-PCN300 material
showed increased photocurrent behavior to both g-CN and
g-h-PCN, with photocurrent values of ~16 pA (Figure S4c,
teal), further demonstrating the benefit of both the presence of
phosphorus linkages, as well as thermal annealing for the
photoactivity. Finally, Nyquist plots (see Supporting Informa-
tion File 1, Table S1 for details) of g-h-PCN (Figure S4d, blue)
and g-h-PCN300 (Figure S4d, teal) showed lower resistivity
compared to pure g-CN (Figure S4d, purple), further support-
ing the idea that the g-h-PCN series enables better charge
mobility due to phosphorus linkages.
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Conclusion

Mechanochemistry provided modular, room temperature access
to phosphorus-linked carbon nitrides based on heptazine units,
through the combination of sodium phosphide and trichlorohep-
tazine. A combination of experimental PXRD, XPS, MAS
NMR, as well as theoretical (DFT) approaches confirmed the
formation of P—C linkages between repeating heptazine units in
the mechanochemically prepared material, with the retention of
the heptazine subunits. The introduction of phosphorus link-
ages reduced photoluminescent recombination and improved
exciton lifetimes, when compared to nitrogen-linked g-CN.
Overall, this supports future investigations of the room-temper-
ature mechanochemical synthesis of heteroatom containing
carbons as well as the benefit of pairing DFT calculations to ex-

perimental, structural studies.

Supporting Information

Supporting Information File 1

General methods and materials as well as additional
spectra.
[https://www.beilstein-journals.org/bjoc/content/
supplementary/1860-5397-18-125-S1.pdf]
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