1,215 research outputs found

    Transport properties and Langevin dynamics of heavy quarks and quarkonia in the Quark Gluon Plasma

    Get PDF
    Quark Gluon Plasma transport coefficients for heavy quarks and quark-antiquark pairs are computed through an extension of the results obtained for a hot QED plasma by describing the heavy-quark propagation in the eikonal approximation and by weighting the gauge field configurations with the Hard Thermal Loop effective action. It is shown that such a model allows to correctly reproduce, at leading logarithmic accuracy, the results obtained by other independent approaches. The results are then inserted into a relativistic Langevin equation allowing to follow the evolution of the heavy-quark momentum spectra. Our numerical findings are also compared with the ones obtained in a strongly-coupled scenario, namely with the transport coefficients predicted (though with some limitations and ambiguities) by the AdS/CFT correspondence.Comment: Minor changes. One figure added. Final version accepted for publication by Nucl. Phys.

    Orthopedic surgery increases atherosclerotic lesions and necrotic core area in ApoE-/- mice

    Get PDF
    Background and aims Observational studies show a peak incidence of cardiovascular events after major surgery. For example, the risk of myocardial infarction increases 25-fold early after hip replacement. The acuteness of this increased risk suggests abrupt enhancement in plaque vulnerability, which may be related to intra-plaque inflammation, thinner fibrous cap and/or necrotic core expansion. We hypothesized that acute systemic inflammation following major orthopedic surgery induces such changes. Methods ApoE−/− mice were fed a western diet for 10 weeks. Thereafter, half the mice underwent mid-shaft femur osteotomy followed by realignment with an intramedullary K-wire, to mimic major orthopedic surgery. Mice were sacrificed 5 or 15 days post-surgery (n = 22) or post-saline injection (n = 13). Serum amyloid A (SAA) was measured as a marker of systemic inflammation. Paraffin embedded slides of the aortic root were stained to measure total plaque area and to quantify fibrosis, calcification, necrotic core, and inflammatory cells. Results Surgery mice showed a pronounced elevation of serum amyloid A (SAA) and developed increased plaque and necrotic core area already at 5 days, which reached significance at 15 days (p = 0.019; p = 0.004 for plaque and necrotic core, respectively). Macrophage and lymphocyte density significantly decreased in the surgery group compared to the control group at 15 days (p = 0.037; p = 0.024, respectively). The density of neutrophils and mast cells remained unchanged. Conclusions Major orthopedic surgery in ApoE−/− mice triggers a systemic inflammatory response. Atherosclerotic plaque area is enlarged after surgery mainly due to an increase of the necrotic core. The role of intra-plaque inflammation in this response to surgical injury remains to be fully elucidated. © 2016 Elsevier Ireland Lt

    Nearest Neighbor Distances on a Circle: Multidimensional Case

    Full text link
    We study the distances, called spacings, between pairs of neighboring energy levels for the quantum harmonic oscillator. Specifically, we consider all energy levels falling between E and E+1, and study how the spacings between these levels change for various choices of E, particularly when E goes to infinity. Primarily, we study the case in which the spring constant is a badly approximable vector. We first give the proof by Boshernitzan-Dyson that the number of distinct spacings has a uniform bound independent of E. Then, if the spring constant has components forming a basis of an algebraic number field, we show that, when normalized up to a unit, the spacings are from a finite set. Moreover, in the specific case that the field has one fundamental unit, the probability distribution of these spacings behaves quasiperiodically in log E. We conclude by studying the spacings in the case that the spring constant is not badly approximable, providing examples for which the number of distinct spacings is unbounded.Comment: Version 2 is updated to include more discussion of previous works. 17 pages with five figures. To appear in the Journal of Statistical Physic

    How Can Progress Toward Ending the Human Immunodeficiency Virus Epidemic in the United States Be Monitored?

    Get PDF
    The plan for Ending the HIV (human immunodeficiency virus) Epidemic (EHE) in the United States aims to reduce new infections by 75% by 2025 and by 90% by 2030. For EHE to be successful, it is important to accurately measure changes in numbers of new HIV infections after 5 and 10 years (to determine whether the EHE goals have been achieved) but also over shorter timescales (to monitor progress and intensify prevention efforts if required). In this viewpoint, we aim to demonstrate why the method used to monitor progress toward the EHE goals must be carefully considered. We briefly describe and discuss different methods to estimate numbers of new HIV infections based on longitudinal cohort studies, cross-sectional incidence surveys, and routine surveillance data. We particularly focus on identifying conditions under which unadjusted and adjusted estimates based on routine surveillance data can be used to estimate changes in new HIV infections

    A Quantitative Model of Energy Release and Heating by Time-dependent, Localized Reconnection in a Flare with a Thermal Loop-top X-ray Source

    Full text link
    We present a quantitative model of the magnetic energy stored and then released through magnetic reconnection for a flare on 26 Feb 2004. This flare, well observed by RHESSI and TRACE, shows evidence of non-thermal electrons only for a brief, early phase. Throughout the main period of energy release there is a super-hot (T>30 MK) plasma emitting thermal bremsstrahlung atop the flare loops. Our model describes the heating and compression of such a source by localized, transient magnetic reconnection. It is a three-dimensional generalization of the Petschek model whereby Alfven-speed retraction following reconnection drives supersonic inflows parallel to the field lines, which form shocks heating, compressing, and confining a loop-top plasma plug. The confining inflows provide longer life than a freely-expanding or conductively-cooling plasma of similar size and temperature. Superposition of successive transient episodes of localized reconnection across a current sheet produces an apparently persistent, localized source of high-temperature emission. The temperature of the source decreases smoothly on a time scale consistent with observations, far longer than the cooling time of a single plug. Built from a disordered collection of small plugs, the source need not have the coherent jet-like structure predicted by steady-state reconnection models. This new model predicts temperatures and emission measure consistent with the observations of 26 Feb 2004. Furthermore, the total energy released by the flare is found to be roughly consistent with that predicted by the model. Only a small fraction of the energy released appears in the super-hot source at any one time, but roughly a quarter of the flare energy is thermalized by the reconnection shocks over the course of the flare. All energy is presumed to ultimately appear in the lower-temperature T<20 MK, post-flare loops

    Talented suppliers? Strategic change and innovation in the UK aerospace industry

    Get PDF
    The 1990s marked the start of extensive re-structuring in the aerospace industry throughout the world. While the ensuing consolidation among prime contractors has been widely researched, the changes affecting the aerospace supply chain have received less attention. This study focuses on the re-structuring taking place within the supply chain of the UK aerospace industry. The findings point to extensive re-structuring. Unlike most earlier studies the lean supply model was found to be a powerful influence, with suppliers moving away from subcontractor status and instead taking on the mantle of ‘talented’ suppliers. While some of the implications of lean supply, in terms of the dynamics of innovation, were not apparent, there were modest signs of increased process innovation on the part of some suppliers

    Ralph: A Visible/Infrared Imager for the New Horizons Pluto/Kuiper Belt Mission

    Full text link
    The New Horizons instrument named Ralph is a visible/near infrared multi-spectral imager and a short wavelength infrared spectral imager. It is one of the core instruments on New Horizons, NASA's first mission to the Pluto/Charon system and the Kuiper Belt. Ralph combines panchromatic and color imaging capabilities with IR imaging spectroscopy. Its primary purpose is to map the surface geology and composition of these objects, but it will also be used for atmospheric studies and to map the surface temperature. It is a compact, low-mass (10.5 kg), power efficient (7.1 W peak), and robust instrument with good sensitivity and excellent imaging characteristics. Other than a door opened once in flight, it has no moving parts. These characteristics and its high degree of redundancy make Ralph ideally suited to this long-duration flyby reconnaissance mission.Comment: 18 pages, 15 figures, 4 tables; To appear in a special volume of Space Science Reviews on the New Horizons missio
    corecore