785 research outputs found

    Multi-View 3D Transesophageal Echocardiography Registration and Volume Compounding for Mitral Valve Procedure Planning

    Get PDF
    Three-dimensional ultrasound mosaicing can increase image quality and expand the field of view. However, limited work has been done applying these compounded approaches for cardiac procedures focused on the mitral valve. For procedures targeting the mitral valve, transesophageal echocardiography (TEE) is the primary imaging modality used as it provides clear 3D images of the valve and surrounding tissues. However, TEE suffers from image artefacts and signal dropout, particularly for structures lying below the valve, including chordae tendineae, making it necessary to acquire alternative echo views to visualize these structures. Due to the limited field of view obtainable, the entire ventricle cannot be directly visualized in sufficient detail from a single image acquisition in 3D. We propose applying an image compounding technique to TEE volumes acquired from a mid-esophageal position and several transgastric positions in order to reconstruct a high-detail volume of the mitral valve and sub-valvular structures. This compounding technique utilizes both fully and semi-simultaneous group-wise registration to align the multiple 3D volumes, followed by a weighted intensity compounding step based on the monogenic signal. This compounding technique is validated using images acquired from two excised porcine mitral valve units and three patient data sets. We demonstrate that this compounding technique accurately captures the physical structures present, including the mitral valve, chordae tendineae and papillary muscles. The chordae length measurement error between the compounded ultrasound and ground-truth CT for two porcine valves is reported as 0.7 ± 0.6 mm and 0.6 ± 0.6 mm

    CCN Data Interpretation Under Dynamic Operation Conditions

    Get PDF
    We have developed a new numerical model for the non-steadystate operation of the Droplet Measurement Technologies (DMT) Cloud Condensation Nuclei (CCN) counter. The model simulates the Scanning Flow CCN Analysis (SFCA) instrument mode, where a wide supersaturation range is continuously scanned by cycling the flowrate over 20–120 s. Model accuracy is verified using a broad set of data which include ammonium sulfate calibration data (under conditions of low CCN concentration) and airborne measurements where either the instrument pressure was not controlled or where exceptionally high CCN loadings were observed. It is shown here for the first time that small pressure and flow fluctuations can have a disproportionately large effect on the instrument supersaturation due to localized compressive/expansive heating and cooling. The model shows that, for fast scan times, these effects can explain the observed shape of the SFCA supersaturation-flow calibration curve and transients in the outlet droplet sizes. The extent of supersaturation depletion from the presence of CCN during SFCA operation is also examined; we found that depletion effects can be neglected below 4000 cm−3 for CCN number

    Multisensor navigation systems: a remedy for GNSS vulnerabilities?

    Get PDF
    Space-based positioning, navigation, and timing (PNT) technologies, such as the global navigation satellite systems (GNSS) provide position, velocity, and timing information to an unlimited number of users around the world. In recent years, PNT information has become increasingly critical to the security, safety, and prosperity of the World's population, and is now widely recognized as an essential element of the global information infrastructure. Due to its vulnerabilities and line-of-sight requirements, GNSS alone is unable to provide PNT with the required levels of integrity, accuracy, continuity, and reliability. A multisensor navigation approach offers an effective augmentation in GNSS-challenged environments that holds a promise of delivering robust and resilient PNT. Traditionally, sensors such as inertial measurement units (IMUs), barometers, magnetometers, odometers, and digital compasses, have been used. However, recent trends have largely focused on image-based, terrain-based and collaborative navigation to recover the user location. This paper offers a review of the technological advances that have taken place in PNT over the last two decades, and discusses various hybridizations of multisensory systems, building upon the fundamental GNSS/IMU integration. The most important conclusion of this study is that in order to meet the challenging goals of delivering continuous, accurate and robust PNT to the ever-growing numbers of users, the hybridization of a suite of different PNT solutions is required

    Twisted brane charges for non-simply connected groups

    Get PDF
    The charges of the twisted branes for strings on the group manifold SU(n)/Z_d are determined. To this end we derive explicit (and remarkably simple) formulae for the relevant NIM-rep coefficients. The charge groups of the twisted and untwisted branes are compared and found to agree for the cases we consider.Comment: 30 page

    In Vitro Assay Development and HTS of Small-Molecule Human ABAD/17β-HSD10 Inhibitors as Therapeutics in Alzheimer's Disease

    Get PDF
    This research was funded by the Scottish Universities Life Science Alliance (SULSA) assay development fund. This research was also kindly supported by The Rosetrees Trust and The Alzheimer’s Society, specifically The Barcopel Foundation, and partly funded by the MSD Scottish Life Sciences fund. As part of an ongoing contribution to Scottish life sciences, MSD Limited, a global health care leader, has given substantial monetary funding to the Scottish Funding Council for distribution via SULSA to develop and deliver a high-quality drug discovery research and training program.A major hallmark of Alzheimer’s disease (AD) is the formation of neurotoxic aggregates composed of the amyloid-β peptide (Aβ). Aβ has been recognized to interact with numerous proteins, resulting in pathological changes to the metabolism of patients with AD. One such mitochondrial metabolic enzyme is amyloid-binding alcohol dehydrogenase (ABAD), where altered enzyme function caused by the Aβ-ABAD interaction is known to cause mitochondrial distress and cytotoxic effects, providing a feasible therapeutic target for AD drug development. Here we have established a high-throughput screening platform for the identification of modulators to the ABAD enzyme. A pilot screen with a total of 6759 compounds from the NIH Clinical Collections (NCC) and SelleckChem libraries and a selection of compounds from the BioAscent diversity collection have allowed validation and robustness to be optimized. The pilot screen revealed 16 potential inhibitors in the low µM range against ABAD with favorable physicochemical properties for blood-brain barrier penetration.PostprintPeer reviewe

    Ozone loss derived from balloon-borne tracer measurements and the SLIMCAT CTM

    Get PDF
    Balloon-borne measurements of CFC-11 (on flights of the DIRAC in situ gas chromatograph and the DESCARTES grab sampler), ClO and O3 were made during the 1999/2000 winter as part of the SOLVE-THESEO 2000 campaign. Here we present the CFC-11 data from nine flights and compare them first with data from other instruments which flew during the campaign and then with the vertical distributions calculated by the SLIMCAT 3-D CTM. We calculate ozone loss inside the Arctic vortex between late January and early March using the relation between CFC-11 and O3 measured on the flights, the peak ozone loss (1200 ppbv) occurs in the 440–470 K region in early March in reasonable agreement with other published empirical estimates. There is also a good agreement between ozone losses derived from three independent balloon tracer data sets used here. The magnitude and vertical distribution of the loss derived from the measurements is in good agreement with the loss calculated from SLIMCAT over Kiruna for the same days

    The W_N minimal model classification

    Full text link
    We first rigourously establish, for any N, that the toroidal modular invariant partition functions for the (not necessarily unitary) W_N(p,q) minimal models biject onto a well-defined subset of those of the SU(N)xSU(N) Wess-Zumino-Witten theories at level (p-N,q-N). This permits considerable simplifications to the proof of the Cappelli-Itzykson-Zuber classification of Virasoro minimal models. More important, we obtain from this the complete classification of all modular invariants for the W_3(p,q) minimal models. All should be realised by rational conformal field theories. Previously, only those for the unitary models, i.e. W_3(p,p+1), were classified. For all N our correspondence yields for free an extensive list of W_N(p,q) modular invariants. The W_3 modular invariants, like the Virasoro minimal models, all factorise into SU(3) modular invariants, but this fails in general for larger N. We also classify the SU(3)xSU(3) modular invariants, and find there a new infinite series of exceptionals.Comment: 25 page

    Registration of \u27Manska\u27 Pubescent Intermediate Wheatgrass

    Get PDF
    \u27MANSKA\u27 pubescent intermediate wheatgrass [Thinopyrum intermedium subsp. barbulatum (Schur) Barkw. & Dewey] (Reg. no. CV-21, PI 562527) was tested as Mandan 12781 and released 16 April 1992 by the USDA-ARS in cooperation with the USDA-SCS; the Agricultural Research Division, Institute of Agriculture and Natural Resources, University of Nebraska; and the North Agricultural Experiment Station

    Cirsium species show disparity in patterns of genetic variation at their range-edge, despite similar patterns of reproduction and isolation

    Get PDF
    Genetic variation was assessed across the UK geographical range of Cirsium acaule and Cirsium heterophyllum. A decline in genetic diversity and increase in population divergence approaching the range edge of these species was predicted based on parallel declines in population density and seed production reported seperately. Patterns were compared with UK populations of the widespread Cirsium arvense.Populations were sampled along a latitudinal transect in the UK and genetic variation assessed using microsatellite markers. Cirsium acaule shows strong isolation by distance, a significant decline in diversity and an increase in divergence among range-edge populations. Geographical structure is also evident in C. arvense, whereas no such patterns are seen in C.heterophyllum. There is a major disparity between patterns of genetic variation in C. acaule and C. heterophyllum despite very similar patterns in seed production and population isolation in these species. This suggests it may be misleading to make assumptions about the geographical structure of genetic variation within species based solely on the present-day reproduction and distribution of populations
    • …
    corecore