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CCN Data Interpretation Under Dynamic Operation
Conditions

Tomi Raatikainen,1,2 Jack J. Lin,1 Kate M. Cerully,3 Terry L. Lathem,1 Richard H.
Moore,3,4 and Athanasios Nenes1,3

1School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
2Finnish Meteorological Institute, Helsinki, Finland
3School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia,
USA
4NASA Langley Research Center, Hampton, Virginia, USA

We have developed a new numerical model for the non-steady-
state operation of the Droplet Measurement Technologies (DMT)
Cloud Condensation Nuclei (CCN) counter. The model simulates
the Scanning Flow CCN Analysis (SFCA) instrument mode, where
a wide supersaturation range is continuously scanned by cycling
the flow rate over 20–120 s. Model accuracy is verified using a broad
set of data which include ammonium sulfate calibration data (un-
der conditions of low CCN concentration) and airborne measure-
ments where either the instrument pressure was not controlled or
where exceptionally high CCN loadings were observed. It is shown
here for the first time that small pressure and flow fluctuations can
have a disproportionately large effect on the instrument supersatu-
ration due to localized compressive/expansive heating and cooling.
The model shows that, for fast scan times, these effects can explain
the observed shape of the SFCA supersaturation-flow calibration
curve and transients in the outlet droplet sizes. The extent of su-
persaturation depletion from the presence of CCN during SFCA
operation is also examined; we found that depletion effects can be
neglected below 4000 cm−3 for CCN number.

1. INTRODUCTION
The Droplet Measurement Technologies (DMT) Continuous-

Flow Streamwise Thermal Gradient Cloud Condensation Nuclei
(CCN) chamber (Lance et al. 2006) is a commercial imple-
mentation of the Continuous-Flow Streamwise Thermal Gradi-
ent Chamber (CFSTGC) of Roberts and Nenes (2005) and is
widely used for measuring CCN concentrations and studying
the hygroscopicity of aerosol. Analysis of the activated droplet
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sizes in the instrument can constrain droplet activation kinet-
ics (Raatikainen et al. 2012, 2013; Moore et al. 2012a) using
a methodology that combines empirically determined standards
of rapid activation (Threshold Droplet Growth Analysis; Moore
et al. 2008; Bougiatioti et al. 2009) with a comprehensive instru-
ment model (Raatikainen et al. 2012) that accounts for droplet
size variations from fluctuations in instrument operation. This
model is valid for steady-state instrument operation such as
in constant-flow (Lance et al. 2006) and Scanning Mobility
CCN Analysis (SMCA; Moore et al. 2010) modes of CCN
measurement.

In the recently developed Scanning Flow CCN Analysis
(SFCA; Moore and Nenes 2009) mode, instrument supersat-
uration is scanned by changing flow rates in 20–120 s cycles.
The ability to scan a wide instrument supersaturation range over
a short time is a great advantage for measurements, where the
aerosol is changing rapidly such as in airborne platforms or
environmental chamber facilities (Moore et al. 2012a,b; Hilde-
brandt Ruiz et al. 2014; Russell et al. 2013). While Moore
and Nenes (2009) developed a computational model to theoret-
ically explore the SFCA concept, it is not mature for interpre-
tation of SFCA data on an operational basis. Furthermore, both
SFCA and constant-flow mode models (Moore and Nenes 2009;
Raatikainen et al. 2012) cannot fully explain the behavior of the
instrument when the pressure and flow rate in the instrument
fluctuate, such as during rapid SFCA scans or when onboard
an aircraft during altitude profiling. To this date, a quantitative
understanding of instrument behavior during dynamic operation
conditions remains elusive.

In this study, we extend the SFCA model of Moore and Nenes
(2009) for use on an operational basis, and to comprehensively
account for non-steady-state CCN counter operation in both
constant-flow and SFCA modes. We will show that the aug-
mented model is able to simulate droplet growth and instrument
supersaturation during dynamic pressure and flow rate operation
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conditions. We further combine the model with laboratory ob-
servations of instrument response to explore the effects of CCN
concentration on the level of supersaturation generated in the
instrument during conditions of dynamic operation.

2. METHODS

2.1. SFCA Description and Calibration
The model is developed specifically for the DMT CCN

counter (Lance et al. 2006), which is based on the Continuous-
Flow Streamwise Thermal Gradient Chamber design of Roberts
and Nenes (2005). The CCN chamber is a vertical cylindrical
tube where the sample flow enters from the column top and is fo-
cused to the centerline by using an approximately ten-fold larger
sheath flow. Column walls are wetted and the wall temperature
linearly increases in the axial direction. Because water vapor
diffuses faster than heat in air, supersaturation develops in the
radial direction and reaches a maximum value at the centerline.
The sample flow is initially subsaturated at the column top, but
a relatively steady centerline supersaturation is developed after
a characteristic entry length (Lance et al. 2006). CCN activate
into droplets that are detected by an Optical Particle Counter
(OPC) that can size particles between 1 and 10 μm diameter
with 0.5 μm resolution.

Instrument supersaturation depends mainly on the wall tem-
perature gradient and the flow rate and pressure in the col-
umn (Roberts and Nenes 2005; Lance et al. 2006). To change
supersaturation, typically the temperature gradient is changed
in a stepwise manner, which makes obtaining a CCN spec-
trum (CCN concentration as a function of supersaturation)
time consuming, e.g., once every 30 min for nine supersatu-
ration levels (Cerully et al. 2011). To address this limitation,
Moore and Nenes (2009) developed SFCA, where the instru-
ment supersaturation is scanned by continuously cycling the
flow rate in the instrument chamber. A CCN spectrum can be
obtained twice every flow cycle, with a frequency as high as once
every 10 s.

Instrument supersaturation can be related to instantaneous
flow rate via calibration with size-selected salt (e.g., ammonium
sulfate) particles (Moore and Nenes 2009). SFCA parameters
(minimum and maximum flow rates, ramp times and wait time
between up- and downscans), instrument pressure, and tem-
perature gradient are kept constant, while both condensation
nuclei (CN) and CCN concentrations are measured. The flow
rate where half of the particles activate, termed critical flow
rate, Q50, is determined for each dry size and the corresponding
median activation supersaturation is calculated based on Köhler
theory (Rose et al. 2008; Moore and Nenes 2009). By combining
the calculated critical flow rates and activation supersaturation
values, instrument supersaturation can be parameterized as a
function of flow rate for both upscan and downscan portions of
an SFCA flow cycle (Moore and Nenes 2009).

2.2. SFCA Model Description and Development
The new fully coupled SFCA instrument and droplet growth

model is based on the steady-state (constant flow) CFSTGC
model developed by Raatikainen et al. (2012), but now with the
transient flow inlet boundary condition employed in the early
SFCA model of Moore and Nenes (2009). The instrument model
calculates instantaneous supersaturation, temperature, pressure,
velocity, and water vapor concentration fields from their initial
values and the time-dependent boundary conditions including
CCN column wall temperatures, flow rates at the column top and
chamber pressure (all of which is recorded by the instrument
with 1 Hz frequency). Owing to the transient nature of SFCA, a
new module was developed to couple the droplet and gas phases
in a computationally efficient manner. Supersaturation, pres-
sure, and temperature trajectories are computed from the tran-
sient fields and used to drive the droplet growth model, which is
identical to that of Raatikainen et al. (2012). The droplet growth
model returns both the instantaneous droplet size distribution
and water vapor condensational sink along each trajectory. If
the effect of droplets on chamber supersaturation is ignored, the
final droplet sizes and the average maximum supersaturation
of the trajectories are solved directly. When the CCN concen-
tration exceeds 1000 cm−3, water condensation upon growing
droplets can decrease water vapor concentration and increase
air temperature so that instrument supersaturation is decreased
(Lathem and Nenes 2011; Lewis and Hering 2013); in this case,
the instrument and droplet growth models are coupled via the
water condensation term and iterated until supersaturation and
final droplet sizes converge.

2.3. Model Inputs and Operation
A major difference between the steady-state and transient

model versions is that the boundary and inlet conditions of the
latter vary over time. The common inputs for both model ver-
sions include column top temperature, total flow rate, sheath-
to-aerosol flow ratio (SAR), pressure, and aerosol properties
including size distributions, hygroscopicity and water uptake
coefficient (Raatikainen et al. 2012). Column inner wall temper-
atures, required for computing supersaturation, are also needed
for the time-dependent calculations. Lance et al. (2006) previ-
ously showed that the inner wall temperature difference between
column bottom and top (�T inner) is smaller than that measured
from the column outer wall (�Touter) due to a thermal resis-
tance that can be described in terms of a wall thermal efficiency,
η = �Tinner

�Touter
. Steady-state η depends on instrument operation pa-

rameters such as flow rate and pressure (Lance et al. 2006); the
steady-state model can take a calibrated instrument supersatu-
ration and infer the equivalent column inner wall temperature
gradient (Raatikainen et al. 2012). However, analysis of SFCA
data (Section 3.3) suggests that SFCA flow rate can change too
quickly to effect a substantial change in wall temperature gradi-
ent, suggesting that a single value of thermal efficiency may be
sufficient for a complete SFCA cycle. The best-fit value of η can
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then be determined from instrument calibration experiments by
matching simulated and observed supersaturation values. How-
ever, it should be noted that the thermal efficiency is instrument
specific and it depends also on instrument settings such as col-
umn top temperature, pressure, and SCFA scan settings.

The experiments used to evaluate the instrument model are
carried out with calibration aerosol, for which physical proper-
ties and size distributions are known. If the model is applied to
ambient aerosol, the size and hygroscopicity distributions (ex-
pressed in terms of the hygroscopicity parameter, κ; Petters and
Kreidenweis 2007) are required inputs. Previous calibration and
ambient activation experiments (Raatikainen et al. 2012, 2013)
have shown that a water uptake coefficient (absorption proba-
bility for water vapor) between 0.1 and 1 is needed to correctly
simulate the rapid growth of ammonium sulfate and most ambi-
ent aerosol, but that the droplet growth is relatively insensitive
to the specific choice of a value in this range. Here, we assume
a value of 0.2 (Raatikainen et al. 2012).

2.4. Including the Effects of Pressure Fluctuations
on Supersaturation

Initial SFCA model simulations (Moore and Nenes 2009)
deviated from the observed data for fast scan times (e.g., CCN
concentrations decreasing rapidly to zero for the duration of the
downscan). Two types of pressure fluctuations originally not
considered by Moore and Nenes (2009), and the resulting adi-
abatic cooling/heating of the chamber air are hypothesized to
explain this counterintuitive behavior. The first pressure fluctua-
tion is related to measured variations in the instrument inlet. The
second pressure fluctuation is from the flow resistance between
the point where pressure is measured at the inlet manifold and
the CCN column; a change in flow rate causes pressure fluc-
tuations that further affect supersaturation (especially during
SFCA operation). These two pressure effects are included in the
instrument model as an additional heat source term as follows.

Since the observed pressure fluctuations are fast and minor
compared to the absolute pressure, we assume that the temper-
ature changes in the chamber are well described by a reversible
adiabatic expansion/compression process. In addition, air be-
haves ideally in the chamber, so its pressure (P) and temperature
(T) are related as

P γ−1 ∝ T γ , [1]

where γ is the adiabatic index (1.4 for dry air). Taking the time
derivative of Equation (1) gives the heating (cooling) source
term, dT/dt, from the inlet pressure fluctuations, dP/dt:

dT

dt
= γ − 1

γ

T

P

dP

dt
. [2]

Because the pressure is measured at the inlet manifold and not
inside the CCN chamber, there will be an additional pressure
fluctuation that needs to be accounted for in Equation (2). In

each tubing segment between the manifold and the chamber,
the Hagen–Poiseuille law can be assumed to apply

�P = 8μLQ

πr4
, [3]

where �P is the pressure drop, Q is the total flow rate, and μ

is the dynamic viscosity of air. L and r are the characteristic
length and radius of the tubing segment, respectively. Viscosity
depends weakly on temperature, but is practically constant over
the range relevant for CFSTGC. Therefore, the pressure drop
between manifold and CCN chamber depends linearly on the
flow rate,

�P = kQ, [4]

where k is an empirically determined positive flow resistance
parameter. It should be noted that Equation (4) applies to steady-
state flow operation and might vary slightly depending on SFCA
scan settings or during upscans and downscans. In addition,
the flow resistance tends to dampen high-frequency (∼1 Hz)
pressure fluctuations observed at the manifold, so the pressure
time series applied to the model may need additional smoothing
to account for this.

Chamber pressure, which is the correct pressure for Equation
(2), can be obtained from Equation (4) as Pchamber = Pinlet −kQ.

Substitution into Equation (2) gives

dT

dt
= γ − 1

γ

T

Pinlet − kQ

(
dPinlet

dt
− k

dQ

dt

)
. [5]

The effect of the above temperature change on instantaneous
supersaturation can be illustrated as follows. Assuming quasi-
steady-state operation, the centerline supersaturation that devel-
ops in the column is given by (Roberts and Nenes 2005):

s ∼ Llv

R

�T

T 2
, [6]

where Llv is the enthalpy of vaporization of liquid water, R is
the ideal gas constant, and T is the local centerline temperature
in the chamber. �T = Tc – TT is the temperature difference
that controls the supersaturation generation, where Tc and TT

represent the dewpoint (i.e., the temperature at which the wa-
ter vapor becomes saturated by isobaric cooling) and physical
temperature at the centerline, respectively.

Under constant flow operation, �T is controlled solely by the
difference between mass and thermal diffusivity. Using this con-
cept and a simple scaling analysis, Roberts and Nenes (2005)
noted that Tc and TT correspond to locations of the wetted
wall upstream of the centerline point of interest, from which
�T = G

(
Q

πr2

)
(τC − τT ) , where τC = r2

D
, τT = r2

α
are the dif-

fusional timescales of water vapor and heat, respectively. r is the
radius of the flow chamber; D and α are the diffusivity of water
vapor and heat in air, respectively. Q is the total flow rate in the
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chamber, and G is the streamwise wall temperature gradient in
the growth chamber. During SFCA and transient operation, the
expansion/compression work from pressure fluctuations further
modifies the centerline temperature between the arrival of water
vapor and heat from the wall as τT

(
dT
dt

)
. Hence, the supersatu-

ration that develops under the influence of pressure fluctuations
then becomes

sSFCA (Q) ∼ Llv

RT 2

(
(τC − τT ) G

(
Q

πr2

)
− τT

(
dT

dt

))

= sCF (Q) − LlvτT

RT 2

(
dT

dt

)
[7]

where sCF(Q) and sSFCA(Q) is the supersaturation for flow rate Q
under constant flow and SFCA mode of operation, respectively.
Substituting

(
dT
dt

)
from Equation (5) into Equation (7) gives

sSFCA (Q) = sCF (Q) − β

PinletT

(
dPinlet

dt

)
+ βk

PinletT

(
dQ

dt

)
,

[8]

where we have assumed Pchamber ≈ Pinlet in the denominator of
the right-hand side terms and β = Llvr

2

Rα

γ−1
γ

.

In the absence of external pressure fluctuations, (i.e., dPinlet
dt

=
0), Equation (8) suggests that supersaturation in the instrument
during SFCA upscans would tend to be higher than expected
from constant flow operation (because dQ/dt > 0 during up-
scans) and vice versa; this also explains the non-symmetric
slope between supersaturation and instantaneous flow rate ob-
served between upscans and downscans. The magnitude of this
effect depends on dQ/dt and k; a 0.6 L min−1 change in flow
rate during 10 s induces a 0.6 mbar s−1 change (for k = 5.6
× 105 mbar m−3 s; Section 3.1), which amounts to about 0.1%
supersaturation units.

Equation (8) also explains why supersaturation is strongly
affected by pressure variations (or fluctuations) at the inlet of
the CFSTGC; for instance, during aircraft ascent, dPinlet/dt < 0
and instrument supersaturation increases, and vice versa during
descent. Quantitatively, observed inlet pressure fluctuations are
rarely larger than 1 mbar s−1, which means less than 0.1 K
s−1 change in air temperature (assuming T = 300 K, Pinlet =
1000 mbar), but this is still important for the supersaturation.
For example, when temperature is 300 K and supersaturation is
0.5%, a 0.1 K increase in temperature changes water saturation
vapor pressure so that supersaturation decreases to 0.35%. This
sensitivity to pressure fluctuations at the inlet emphasizes the
importance of using a pressure controller at the inlet of the
instrument for airborne operation.

3. RESULTS
Several laboratory experiments and field measurements uti-

lizing the CFSTGC in dynamic operation mode are presented
here. The measurements are used to constrain model parameters,

to assess model accuracy in simulating droplet growth and super-
saturation for calibration and field experiments, and to demon-
strate the ability of the model to interpret non-steady-state CCN
data.

3.1. The Flow Resistance Parameter, k , and its
Importance

The k parameter in Equations (4), (5), and (8) describes
the effect of flow resistance on the pressure drop between the
inlet manifold and the CCN chamber. The parameter can be
obtained experimentally by measuring the pressure drop be-
tween the instrument inlet and the sheath flow connection to
the column top, which are assumed to be the same as the mani-
fold pressure and the chamber pressure to within measurement
uncertainty, respectively. Figure 1 presents the pressure drop
measurements for a DMT CCN-100 (SN 002) over a range of
different steady-state flow rates. The first set of pressure drop
measurements was conducted at ambient pressure. A second set
of measurements was conducted at lower pressure (700 mbar)
by connecting the inlet of the CCN instrument to a DMT Pres-
sure Control module. The resulting slope of pressure drop ver-
sus flow rate for all the measurements combined provides k =
5.6 × 105 mbar m−3 s.

The importance of pressure fluctuations on instrument su-
persaturation can be demonstrated by comparing observations
against simulations with and without the dPinlet

dt
and dQ

dt
terms

(Equation (5)) implemented in the temperature fields of the
simulation. Figure 2 shows measured total flow rate, inlet pres-
sure, and droplet size distribution data from a 30 s SFCA
scan with 42 nm diameter ammonium sulfate particles. Col-
umn top temperature was 295.8 K and the bottom temperature
was 5.5 K higher. Simulations are based on smoothed inlet pres-
sure (shown with the thick gray line), measured total flow rate,

FIG. 1. Pressure drop between the inlet manifold and the CCN chamber (DMT
CCN-100, SM 002) as a function of total flow rate.
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FIG. 2. Measured and smoothed instrument pressure (P), total flow rate (Q),
and droplet size distribution histograms. The different lines represent simulated
average droplet sizes for a single 30-s scan with 42 nm ammonium sulfate
particles flowing through the instrument. The simulations show the effects of
accounting for inlet pressure fluctuations (the dP term) and those from changes
in flow rate (the dQ term).

sheath-to-aerosol flow ratio equal to 10, and column inner wall
temperatures equal to those measured from the outer wall. The
inner wall temperature gradient is typically smaller than that
measured from the outer wall (Lance et al. 2006), so these sim-
ulations give an upper limit for droplet size. Figure 2 clearly
shows the importance of including the dQ

dt
term. Other examples

will be presented in Section 3.4 where dPinlet
dt

is important, and at
times, dominant.

3.2. Influence of SFCA Ramp Time
Figure 2 focuses on one rapid scan from a larger data set

that characterizes the instrument response for different SFCA
scan times. We have confirmed that the updated model captures
the observed instrument behavior for both rapid (15 s upscan,
15 s downscan) and slow (75 s upscans, 75 s downscan) scans.
Results for a 60 s scan are presented in Figure 3, which shows
simulated and observed time-dependent pressure, flow rate, ac-
tivation ratio (CCN/CN), and droplet size distributions. Doubly
charged particles are clearly visible in the experimental size
distribution (large droplets when CCN/CN < 0.1), but these are
not included in the model simulations. Simulations are based
on measured pressure, smoothed pressure, and a constant aver-
age pressure (700 mbar). Other parameters are the same as in
Figure 2. The measured pressure exhibits some high-frequency
fluctuations, which if included in the simulations, notably affects
the supersaturation and droplet size (Figure 3); such fluctuations

FIG. 3. Simulated and observed instrument (SFCA) response for calibration
aerosol. The panels from top to bottom show instrument pressure (P), total flow
rate (Q), simulated supersaturation (s), observed and simulated activation ratios
(CCN/CN), and droplet size distribution (the color scale is the same as in Figure
2). The simulations are based on constant (700 mbar), measured and smoothed
pressure.

are not seen in the experimental data, suggesting that the flow
resistance between the sensor and chamber dampens their am-
plitude enough to mitigate their effect on supersaturation. Simu-
lations using constant and smoothed pressures are quite similar,
implying that the dQ/dt term in Equation (5) dominates. Ac-
tivation ratios and droplet sizes are predicted quite accurately
for these ramp times even without adjusting the thermal effi-
ciency (here η = 1). Calibrations can be used to determine η so
that simulated and calibrated supersaturation values match; this
calibration procedure is the focus of Section 3.3.

3.3. Dynamic Supersaturation Calibration
A calibration with different dry particle sizes is needed for

determining instrument supersaturation as a function of flow
rate (Moore and Nenes 2009) as described in Section 2.1. The
instrument model then can be constrained, by varying the ther-
mal efficiency (which is the only free parameter in the model),
to optimally match the observed response to calibration aerosol.
Figure 4 shows results from a calibration where activation flow
rates for both up- and downscans were determined for size-
selected ammonium sulfate aerosol (14 sizes between 25 and
75 nm). In this experiment, column top and bottom temperature
difference was maintained constant (7 K), inlet pressure was set
to 800 mbar, with 5–7 mbar observed fluctuations during each
scan. Ramp times were 20 s for both up- and downscans cover-
ing a range of flow rates from 0.3 to 1.1 L min−1. Simulations
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FIG. 4. Calibrated and simulated supersaturation as a function of total flow
rate. Results are presented for a SFCA cycle which begins at the minimum flow
rate (point A), reaches the maximum flow rate (point B) during the upscan, and
returns to point A during the downscan. The calibrated supersaturation values
(markers) are based on 14 different ammonium sulfate dry particles sizes. Other
aspects of the simulations and experiments are outlined in Section 3.3.

with η = 0.9 are carried out with constant (crosses) and
smoothed (solid line) inlet pressure. Clearly, both pressure and
flow rate terms in Equation (5) are needed to correctly predict
instrument supersaturation trends under these conditions. Ad-
ditional simulations are presented with η ranging from 0.3 to
0.9, with simulations capturing the calibrations optimally for η

∼ 0.5 for this instrument and these specific instrument settings.
When applying the model to any SFCA data set, the best-fit
thermal efficiency should be found using the same calibration
data that is used in the instrument calibration.

3.4. Impact of Pressure Fluctuations During Constant
Flow Operation

It has been operationally known that pressure variation and
fluctuations during constant flow operation of the CFSTGC have
a profound (and transient) impact on instrument response. This
effect was especially evident during airborne campaigns where
pressure varied with altitude changes, and motivated the devel-
opment of a pressure control module by DMT. As an example of
the accuracy of the model in simulating droplet size in the pres-
ence of large pressure fluctuations, the SFCA model is applied
to MASE II campaign data (Sorooshian et al. 2008). The seg-
ment from flight 3 (12 July 2007) shown in Figure 5 is selected
as it combines sampling of ambient CCN (at a flow rate of 0.5
L min−1) during constant altitude (e.g., after 20:40), ascent (be-
fore 20:30), and descent (20:30 to 20:40). The instrument was
not operated with the DMT pressure control module, so the inlet
pressure (Figure 5) follows the ambient pressure. The calibrated
instrument supersaturation is based on the column temperature
gradient, which is changed in a stepwise manner. The tran-

sient time periods between supersaturation changes, which are
shaded in gray, are not considered in the following discussion.
The CCN instrument was sampling polydisperse aerosol and the
size distribution was measured from 10 to 800 nm size range
by a scanning differential mobility analyzer and a condensation
particle counter. Based on the reported composition obtained
with an Aerodyne Aerosol Mass Spectrometer, a constant hy-
groscopicity described by κ = 0.3 (Petters and Kreidenweis
2007) is assumed for all dry particle sizes. In addition to the
SFCA model, the original constant flow model (Raatikainen
et al. 2012) was used to simulate the expected droplet size and
instrument supersaturation for steady-state conditions (without
Equation (5)). Thermal efficiency (η) is set to 1, because this
value gives the best agreement between the calibrated instru-
ment supersaturation and that from the constant flow model. It
should be noted that OPCs in the CCNc may not always be well
calibrated; CCN counters may also exhibit variations between
instruments; this means that predicted and measured droplet
sizes agree very well for some instruments, but with others the
difference can be up to 50% (Raatikainen et al. 2012, 2013).
This effect is also clearly seen in this comparison. Previous
comparison of several constant flow data sets has shown that the
bias depends monotonically on droplet size, which means that
droplet sizes can be scaled (Raatikainen et al. 2013). Here, mea-
sured and simulated droplet sizes are shown in different axes
scaled to fill the plot area.

Comparison of measured and simulated average droplet di-
ameters shows that the SFCA model can predict the main trends
(ascents and descents) and rapid (<1 min) fluctuations observed
in the droplet size well, but the steady-state model fails. This
shows that, in addition to the SFCA mode data sets, the SFCA
model is applicable to constant flow data sets where significant
pressure fluctuations are observed.

This data set presented in Figure 5 serves as an example of
a practical application of the SFCA model, where it is used to
estimate the effect of various fluctuations on instrument super-
saturation. Even if the ascents and descents would have been
ignored in normal data analysis, the model shows that there are
significant fluctuations in supersaturation during the relatively
steady flight altitudes. The changes in CCN concentration and
droplet size could be erroneously interpreted as changes in par-
ticle hygroscopicity and droplet growth kinetics, respectively.

3.5. Supersaturation Depletion Under High CCN
Concentrations

One main application of the CCN counter model is to estimate
the effect of high CCN concentration on instrument supersatu-
ration. As an example, we present a data set using SFCA to char-
acterize the CCN activity of secondary organic aerosol (SOA)
generated at the Carnegie Mellon University (CMU) SOA cham-
ber (Hildebrandt Ruiz et al. 2014). When activated droplet sizes
for the chamber aerosol were compared to those for ammo-
nium sulfate calibration aerosol, the chamber aerosol droplets
were larger than the ammonium sulfate droplets under identical
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FIG. 5. In situ observations from MASE II flight 3 (Sorooshian et al. 2008) and simulations based on the constant-flow and SFCA models. The upper panel
shows observed pressure, the middle panel shows observed and simulated supersaturation values and the lower panel shows average droplet size. Noisy observed
droplet sizes where CCN concentration is below 20 cm−3 are not shown. Gray shaded periods indicate transient behavior from column temperature changes. The
observed droplet size is shown using the right-hand side scale.

instrument operation. This seems counterintuitive, given that
ammonium sulfate aerosol exhibit rapid activation kinetics con-
sistent with an uptake coefficient of order unity (Raatikainen
et al. 2012), and it would be expected that SOA particles should
form droplets that are of the same size or smaller. However,
this may be explained by depletion of supersaturation (Lathem
and Nenes 2011) caused by the high CCN concentrations in
the calibration experiment (approaching 6000 cm−3) versus the
chamber experiment (100–1000 cm−3). Reductions in super-
saturation in the calibration data lead to a smaller droplet size
compared to SOA CCN. A thorough investigation of supersat-
uration depletion using the SFCA model is presented below.

Figure 6 shows droplet sizes from the CMU ammonium sul-
fate calibration and SOA experiments described above. SFCA
was carried out using relatively slow scans (60 s upscans and
60 s downscans; flow rate from 0 to 0.95 L min−1) at ambient
pressure. Column top and bottom temperature difference was
about 6 K in both cases. Dry particle sizes in the figure are
selected so that the SOA (κ = 0.3, 120 nm dry diameter) and
ammonium sulfate (κ = 0.6, 86 nm dry diameter) have simi-
lar activation supersaturation. When the left and right axes are
scaled so that the simulations accounting for supersaturation
depletion line up with the ammonium sulfate calibration data
(reasons and justification for the scaling are given in Section

FIG. 6. Observed average droplet sizes from ammonium sulfate calibration
and SOA chamber (left axis) and simulations with and without supersaturation
depletion effects representing the calibration (right axis). Data for a whole SFCA
cycle are presented, similar to the approach of Figure 4.
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3.4), the simulation without supersaturation depletion effects
corresponds to a calibration aerosol droplet size with low CCN
concentration. The supersaturation depletion can explain at least
half of the difference between the SOA and ammonium sulfate
aerosol droplet size. The remaining difference may be a result
of two prediction biases. First, minimum total flow is typically
about 0.2 L min−1, but in this case the lowest flow rates were
close to zero, where calculations become less accurate (internal
time step is inversely proportional to the total flow rate), and
these will affect the accuracy of the calculated supersaturation
and residence time. In addition, the low flow rates mean that the
maximum residence time may be long enough for gravitational
settling to have an effect on observed droplet size. The second
issue is that the inlet pressure is noisy (possibly by acoustic
waves picked up by the transducer) with up to 1 mbar s−1 fluc-
tuations; smoothed pressure values were used in the simulations
to dampen the high-frequency fluctuations, but the real dP/dt in
the chamber may differ somewhat from that calculated from the
smoothed inlet pressure.

To further examine the applicability of the model in sim-
ulating supersaturation depletion effects in laboratory condi-
tions, we experimentally determined the impact of water vapor
condensation on supersaturation by repeating the approach of
Lathem and Nenes (2011) for SFCA mode operation of the CF-
STGC. The results of the experiments (flow upscans) are shown
in Figure 7. Measurements for “zero CCN” conditions corre-
spond to low CCN concentrations (between 20 and 50 cm−3),
and reflect instrument response without supersaturation deple-
tion. As expected, supersaturation under “zero CCN” condi-
tions, so, exhibits a linear relationship with respect to instanta-
neous flow rate (Equation (8)). As CCN concentrations increase
with the increasing flow rate, the supersaturation that develops,
s begins considerably diverging from the “zero CCN” value at
around 4000 cm−3. Up to this concentration, the change in su-
persaturation ratio, s/so (Figure 7b), is consistent with the results
of Lathem and Nenes (2011) for steady-state operation. Further
increasing the flow rate leads to clear separation of so and s lines
while initially there is only a small increase in CCN concentra-
tion. As a result, s/so decreases first rapidly as a function of CCN
concentration and then reaches a plateau (Figure 7b). The SFCA
model simulations are based on the measured dry particle size
distributions and recorded CCN counter operation parameters.
Thermal efficiency, η, was set to 0.7 based on the best agree-
ment with calibrated instrument supersaturation. Simulations of
supersaturation depletion effects are in good agreement with the
experiments; they both indicate that up to CCN concentration
around 4000 cm−3, supersaturation depletion is less than 10%
and depends linearly on CCN concentration. Further increasing
CCN concentration leads to a rapid drop to about s/so ∼ 0.7 fol-
lowed by a plateau. CCN concentration and the exact location
of the rapid drop in s/so depend strongly on initial dry particle
size distribution; the error bars in the simulated s/so expresses
the variability in the parameter owing to changes in the size dis-
tribution of the inlet aerosol in all the calibration experiments.

FIG. 7. Effect of CCN concentration on instrument supersaturation in SFCA
mode. (a) Supersaturation versus flow rate under “zero CCN” conditions and
when CCN concentration increases. The concentration of CCN causing the
supersaturation depletion is indicated by the green (grey) diamond symbols
(and right vertical axis). (b) The extent of supersaturation depletion versus CCN
concentration.

The practical conclusion from this experiment is that in order to
keep the supersaturation depletion effect below 10%, CCN con-
centrations larger than 4000 cm−3 should be avoided, possibly
by dilution of the sample with dry, filtered air. Caution should be
given, however, owing to the possibility of volatilization biases
(Asa-Awuku et al. 2009).

4. CONCLUSIONS
We have expanded the capabilities of the fully coupled

droplet growth and instrument model for the DMT CCN in-
strument in order to capture dynamic, transient behavior in
the instrument either from specified operating conditions or
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from changing environmental variables. The updated model can
operationally simulate droplet growth and instrument supersatu-
ration under dynamic operation conditions, including the SFCA
mode (Moore and Nenes 2009). As with the previous steady-
state model version (Raatikainen et al. 2012), the main purpose
of the updated model is to comprehensively represent the effects
of instrument operation parameters, aerosol hygroscopicity, size
distributions, and water vapor condensation (Lathem and Nenes
2011) on supersaturation and droplet size. The remaining un-
explainable variations in droplet size can then be interpreted as
compositionally driven changes in droplet growth kinetics de-
scribed by the water vapor uptake coefficient (Raatikainen et al.
2013).

Comparison of model predictions with experimental data
shows good correlation between droplet size and instrument
supersaturation. An essential and novel component of the new
model version is the introduction of observed pressure fluc-
tuations at the instrument inlet in the simulations, as the re-
sulting compression/expansion heating has a profound impact
on supersaturation that is able to explain previously observed
yet poorly understood instrument behavior. This strong depen-
dence on pressure necessitates accurate pressure control with
minimal high frequency fluctuations during airborne CCN mea-
surements. Pressure data from the instrument should be carefully
checked for data quality, since fluctuations larger than 1 mbar
s−1 will bias the instrument supersaturation from calibration
values.

Another factor not considered to date in the instrument op-
eration arises from the flow resistance between the inlet (where
pressure is currently measured) and the chamber where CCN
activate. Although small, the resistance induces a pressure drop
proportional to the flow rate in the chamber, giving rise to pres-
sure fluctuations that are not detected by the inlet pressure
controller, but that nonetheless affect supersaturation during
SFCA operation. The slight expansion during the upscan in-
duces cooling that increases supersaturation, and vice versa; for
rapid downscans, the CCN column may become subsaturated,
leading to the observed loss in activated droplet signal. Overall,
these pressure oscillations lead to the observed asymmetry in
the supersaturation cycle during an SFCA mode of operation,
and likely explain why the operational supersaturation-flow en-
velope reported by Moore and Nenes (2009) is wider than their
simplified simulations, even for a 60-s ramp time. Careful cali-
bration of SFCA, however, and maintaining identical flow scan
characteristics leads to reproducible results for CCN spectra
obtained with the SFCA method.

Similar to constant-flow operation of the CFSTGC (Lathem
and Nenes 2011), the presence of CCN may deplete supersatura-
tion during SFCA. When expressed in terms of a supersaturation
ratio, s/so, the extent of supersaturation depletion is within 10%
of the set point for CCN concentrations up to 4000 cm−3. De-
pletion effects become increasingly important for higher CCN
concentrations, and according to model simulations, follow a
non-monotonic dependence. To address the effects of super-

saturation depletion for SFCA, we suggest to follow the rec-
ommendations of Lathem and Nenes (2011): to either adjust
supersaturation post-measurement (using the SCFA model pre-
dictions) or avoid high CCN concentrations altogether.

Overall, this work resolves important counterintuitive behav-
ior observed in the CFSTGC when operated under dynamical
conditions of operation. The computational model developed is
critical for understanding the reasons behind this behavior. The
model code is publicly available online for use by the CCN
user community (at http://nenes.eas.gatech.edu/Experiments/
CFSTGC.html) to better understand their instruments, estimate
the effects of various perturbations on measurement quality,
and to interpret the droplet size data (which is a very important
and yet underutilized source of information for cloud models)
to diagnose instrument problems and also observe possible
deviations from fast droplet growth kinetics.
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