1,135 research outputs found

    Analysis and use of VAS satellite data

    Get PDF
    A series of interrelated investigations has examined the analysis and use of VAS (VISSR Atmospheric Sounder) satellite data. A case study of VAS-derived mesoscale stability parameters suggested that they would have been a useful supplement to conventional data in the forecasting of thunderstorms on the day of interest. However, the meteorological significance of small or short lived stability features was uncertain. A second investigation examined the roles of first guess and VAS radiometric data in producing sounding retrievals. The radiance data often did not have a decisive influence on the final satellite soundings. Broad-scale patterns of the first guess, radiances, and retrievals frequently were similar, whereas small scale retrieval features, especially in the dew points, were often of uncertain origin

    Analysis and use of VAS satellite data

    Get PDF
    Four interrelated investigations have examined the analysis and use of VAS satellite data. A case study of VAS-derived mesoscale stability parameters suggested that they would have been a useful supplement to conventional data in the forecasting of thunderstorms on the day of interest. A second investigation examined the roles of first guess and VAS radiometric data in producing sounding retrievals. Broad-scale patterns of the first guess, radiances, and retrievals frequently were similar, whereas small-scale retrieval features, especially in the dew points, were often of uncertain origin. Two research tasks considered 6.7 micron middle tropospheric water vapor imagery. The first utilized radiosonde data to examine causes for two areas of warm brightness temperature. Subsidence associated with a translating jet streak was important. The second task involving water vapor imagery investigated simulated imagery created from LAMPS output and a radiative transfer algorithm. Simulated image patterns were found to compare favorably with those actually observed by VAS. Furthermore, the mass/momentum fields from LAMPS were powerful tools for understanding causes for the image configurations

    Ultrasonic Inspection of Graphite-Epoxy Solid Rocket Motor Canisters

    Get PDF
    Thick filament-wound composite materials are particularly attractive for use in solid rocket motor structures. However, these materials are difficult to inspect because of the scattering losses associated with multiple fiber layers. Damage caused by either low or high velocity impact which results in matrix cracking, delaminations and broken fibers cannot be tolerated because of the possibility of catastrophic system failure. American Research Corporation of Virginia has performed a 2-year Phase II Small Business Innovation Research contract to develop an ultrasonic inspection system for graphite/epoxy rocket motor canisters [1]. This paper details the experimental apparatus and testing of rocket motor canisters, presents testing results and discusses observations and detection thresholds

    Acid/base-triggered switching of circularly polarized luminescence and electronic circular dichroism in organic and organometallic helicenes.

    Get PDF
    Electronic circular dichroism and circularly polarized luminescence acid/base switching activity has been demonstrated in helicene-bipyridine proligand 1 a and in its “rollover” cycloplatinated derivative 2 a. Whereas proligand 1 a displays a strong bathochromic shift (>160 nm) of the nonpolarized and circularly polarized luminescence upon protonation, complex 2 a displays slightly stronger emission. This strikingly different behavior between singlet emission in the organic helicene and triplet emission in the organometallic derivative has been rationalized by using quantum-chemical calculations. The very large bathochromic shift of the emission observed upon protonation of azahelicene-bipyridine 1 a has been attributed to the decrease in aromaticity (promoting a charge-transfer-type transition rather than a π–π* transition) as well as an increase in the HOMO–LUMO character of the transition and stabilization of the LUMO level upon protonation

    Infering Air Quality from Traffic Data using Transferable Neural Network Models

    Get PDF
    This work presents a neural network based model for inferring air quality from traffic measurements. It is important to obtain information on air quality in urban environments in order to meet legislative and policy requirements. Measurement equipment tends to be expensive to purchase and maintain. Therefore, a model based approach capable of accurate determination of pollution levels is highly beneficial. The objective of this study was to develop a neural network model to accurately infer pollution levels from existing data sources in Leicester, UK. Neural Networks are models made of several highly interconnected processing elements. These elements process information by their dynamic state response to inputs. Problems which were not solvable by traditional algorithmic approaches frequently can be solved using neural networks. This paper shows that using a simple neural network with traffic and meteorological data as inputs, the air quality can be estimated with a good level of generalisation and in near real-time. By applying these models to links rather than nodes, this methodology can directly be used to inform traffic engineers and direct traffic management decisions towards enhancing local air quality and traffic management simultaneously.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech

    Short Communication Reflectance-based detection of oxidizers in ambient air

    Get PDF
    This study used two types of paper supported materials with a prototype, reflectance-based detector for indication of hydrogen peroxide vapor under ambient laboratory conditions. Titanyl based indicators provide detection through reaction of the indicator resulting in a dosimeter type sensor, while porphyrin based indicators provide a reversible interaction more suitable to continuous monitoring applications. These indicators provide the basis for discussion of characteristics important to design of a sensor system including the application environment and duration, desired reporting frequency, and target specificity

    Short Communication Reflectance-based detection of oxidizers in ambient air

    Get PDF
    This study used two types of paper supported materials with a prototype, reflectance-based detector for indication of hydrogen peroxide vapor under ambient laboratory conditions. Titanyl based indicators provide detection through reaction of the indicator resulting in a dosimeter type sensor, while porphyrin based indicators provide a reversible interaction more suitable to continuous monitoring applications. These indicators provide the basis for discussion of characteristics important to design of a sensor system including the application environment and duration, desired reporting frequency, and target specificity

    New result for the neutron β\beta-asymmetry parameter A0A_0 from UCNA

    Full text link
    The neutron β\beta-decay asymmetry parameter A0A_0 defines the correlation between the spin of the neutron and the momentum of the emitted electron, which determines λ=gAgV\lambda=\frac{g_{A}}{g_{V}}, the ratio of the axial-vector to vector weak coupling constants. The UCNA Experiment, located at the Ultracold Neutron facility at the Los Alamos Neutron Science Center, is the first to measure such a correlation coefficient using ultracold neutrons (UCN). Following improvements to the systematic uncertainties and increased statistics, we report the new result A0=0.12054(44)stat(68)systA_0 = -0.12054(44)_{\mathrm{stat}}(68)_{\mathrm{syst}} which yields λgAgV=1.2783(22)\lambda\equiv \frac{g_{A}}{g_{V}}=-1.2783(22). Combination with the previous UCNA result and accounting for correlated systematic uncertainties produces A0=0.12015(34)stat(63)systA_0=-0.12015(34)_{\mathrm{stat}}(63)_{\mathrm{syst}} and λgAgV=1.2772(20)\lambda\equiv \frac{g_{A}}{g_{V}}=-1.2772(20).Comment: 9 pages, 7 figures, updated to as-published versio

    Search for neutron dark decay: n → χ + e⁺e⁻

    Get PDF
    In January, 2018, Fornal and Grinstein proposed that a previously unobserved neutron decay branch to a dark matter particle (χ) could account for the discrepancy in the neutron lifetime observed in two different types of experiments. One of the possible final states discussed includes a single χ along with an e⁺e⁻ pair. We use data from the UCNA (Ultracold Neutron Asymmetry) experiment to set limits on this decay channel. Coincident electron-like events are detected with ∼ 4π acceptance using a pair of detectors that observe a volume of stored Ultracold Neutrons (UCNs). We use the timing information of coincidence events to select candidate dark sector particle decays by applying a timing calibration and selecting events within a physically-forbidden timing region for conventional n → p + e⁻ + ν̅_e decays. The summed kinetic energy (E_(e⁺e⁻)) from such events is reconstructed and used to set limits, as a function of the χ mass, on the branching fraction for this decay channel

    A Robust Approach for Multivariate Binary Vectors Clustering and Feature Selection

    Get PDF
    International audienceGiven a set of binary vectors drawn from a ¯nite multiple Bernoulli mixture model, an important problem is to determine which vectors are outliers and which features are relevant. The goal of this paper is to propose a model for binary vectors clustering that accommo- dates outliers and allows simultaneously the incorporation of a feature selection methodology into the clustering process. We derive an EM al- gorithm to ¯t the proposed model. Through simulation studies and a set of experiments involving handwritten digit recognition and visual scenes categorization, we demonstrate the usefulness and e®ectiveness of our method
    corecore