16 research outputs found

    The COMBREX Project: Design, Methodology, and Initial Results

    Get PDF
    © 2013 Brian P. et al.Prior to the “genomic era,” when the acquisition of DNA sequence involved significant labor and expense, the sequencing of genes was strongly linked to the experimental characterization of their products. Sequencing at that time directly resulted from the need to understand an experimentally determined phenotype or biochemical activity. Now that DNA sequencing has become orders of magnitude faster and less expensive, focus has shifted to sequencing entire genomes. Since biochemistry and genetics have not, by and large, enjoyed the same improvement of scale, public sequence repositories now predominantly contain putative protein sequences for which there is no direct experimental evidence of function. Computational approaches attempt to leverage evidence associated with the ever-smaller fraction of experimentally analyzed proteins to predict function for these putative proteins. Maximizing our understanding of function over the universe of proteins in toto requires not only robust computational methods of inference but also a judicious allocation of experimental resources, focusing on proteins whose experimental characterization will maximize the number and accuracy of follow-on predictions.COMBREX is funded by a GO grant from the National Institute of General Medical Sciences (NIGMS) (1RC2GM092602-01).Peer Reviewe

    Analysis of protein-coding genetic variation in 60,706 humans

    Get PDF
    Large-scale reference data sets of human genetic variation are critical for the medical and functional interpretation of DNA sequence changes. We describe the aggregation and analysis of high-quality exome (protein-coding region) sequence data for 60,706 individuals of diverse ethnicities generated as part of the Exome Aggregation Consortium (ExAC). This catalogue of human genetic diversity contains an average of one variant every eight bases of the exome, and provides direct evidence for the presence of widespread mutational recurrence. We have used this catalogue to calculate objective metrics of pathogenicity for sequence variants, and to identify genes subject to strong selection against various classes of mutation; identifying 3,230 genes with near-complete depletion of truncating variants with 72% having no currently established human disease phenotype. Finally, we demonstrate that these data can be used for the efficient filtering of candidate disease-causing variants, and for the discovery of human “knockout” variants in protein-coding genes

    Analysis of protein-coding genetic variation in 60,706 humans

    Get PDF
    Large-scale reference data sets of human genetic variation are critical for the medical and functional interpretation of DNA sequence changes. Here we describe the aggregation and analysis of high-quality exome (protein-coding region) DNA sequence data for 60,706 individuals of diverse ancestries generated as part of the Exome Aggregation Consortium (ExAC). This catalogue of human genetic diversity contains an average of one variant every eight bases of the exome, and provides direct evidence for the presence of widespread mutational recurrence. We have used this catalogue to calculate objective metrics of pathogenicity for sequence variants, and to identify genes subject to strong selection against various classes of mutation; identifying 3,230 genes with near-complete depletion of predicted protein-truncating variants, with 72% of these genes having no currently established human disease phenotype. Finally, we demonstrate that these data can be used for the efficient filtering of candidate disease-causing variants, and for the discovery of human 'knockout' variants in protein-coding genes.Peer reviewe

    Additional file 11: Figure S9. of Tools and best practices for data processing in allelic expression analysis

    No full text
    QC measures improve the power to detect biologically relevant allelic expression at genes that have eQTLs (eGenes), where individuals that are heterozygous for the top eQTL SNP (eSNP) are expected to have more allelic expression than homozygous individuals (extended). a QC measures increase the significance of the difference between heterozygous and homozygous individuals within eGenes. b QC measures reduce the variance of allelic expression between individuals within eGenes. (TIFF 2856 kb

    Additional file 1: Figure S1. of Tools and best practices for data processing in allelic expression analysis

    No full text
    Allelic expression signal from a population of monoclonal versus polyclonal cells. In the latter, standard RNA-sequencing will show allelic imbalance only when the two alleles are systematically differentially expressed, e.g., due to a regulatory variant or imprinting. (TIFF 3238 kb

    Thousands of missed genes found in bacterial genomes and their analysis with COMBREX

    Get PDF
    The dramatic reduction in the cost of sequencing has allowed many researchers to join in the effort of sequencing and annotating prokaryotic genomes. Annotation methods vary considerably and may fail to identify some genes. Here we draw attention to a large number of likely genes missing from annotations using common tools such as Glimmer and BLAST. By analyzing 1,474 prokaryotic genome annotations in GenBank, we identify 13,602 likely missed genes that are homologs to non-hypothetical proteins, and 11,792 likely missed genes that are homologs only to hypothetical proteins, yet have supporting evidence of their protein-coding nature from COMBREX, a newly created gene function database. We also estimate the likelihood that each potential missing gene found is a genuine protein-coding gene using COMBREX. Our analysis of the causes of missed genes suggests that larger annotation centers tend to produce annotations with fewer missed genes than smaller centers, and many of the missed genes are short genes <300 bp. Over 1,000 of the likely missed genes could be associated with phenotype information available in COMBREX. 359 of these genes, found in pathogenic organisms, may be potential targets for pharmaceutical research. The newly identified genes are available on COMBREX’s website.https://doi.org/10.1186/1745-6150-7-3

    Enhancement of beta-sheet assembly by cooperative hydrogen bonds potential

    No full text
    Motivation: The roughness of energy landscapes is a major obstacle to protein structure prediction, since it forces conformational searches to spend much time struggling to escape numerous traps. Specifically, beta-sheet formation is prone to stray, since many possible combinations of hydrogen bonds are dead ends in terms of beta-sheet assembly. It has been shown that cooperative terms for backbone hydrogen bonds ease this problem by augmenting hydrogen bond patterns that are consistent with beta sheets. Here, we present a novel cooperative hydrogen-bond term that is both effective in promoting beta sheets and computationally efficient. In addition, the new term is differentiable and operates on all-atom protein models
    corecore