217 research outputs found

    A Mathematical Unification of Geometric Crossovers Defined on Phenotype Space

    Get PDF
    Geometric crossover is a representation-independent definition of crossover based on the distance of the search space interpreted as a metric space. It generalizes the traditional crossover for binary strings and other important recombination operators for the most frequently used representations. Using a distance tailored to the problem at hand, the abstract definition of crossover can be used to design new problem specific crossovers that embed problem knowledge in the search. This paper is motivated by the fact that genotype-phenotype mapping can be theoretically interpreted using the concept of quotient space in mathematics. In this paper, we study a metric transformation, the quotient metric space, that gives rise to the notion of quotient geometric crossover. This turns out to be a very versatile notion. We give many example applications of the quotient geometric crossover

    CSM-467: Quotient Geometric Crossovers

    Get PDF
    Geometric crossover is a representation-independent definition of crossover based on the distance of the search space interpreted as a metric space. It generalizes the traditional crossover for binary strings and other important recombination operators for the most frequently used representations. Using a distance tailored to the problem at hand, the abstract definition of crossover can be used to design new problem specific crossovers that embed problem knowledge in the search. In previous work we have started studying how metric transformations of the distance associated with geometric crossover affect the original geometric crossover. In particular, we focused on the product of metric spaces. This metric transformation gives rise to the notion of product geometric crossover that allows to build new geometric crossovers combining pre-existing geometric crossovers in a simple way. In this paper, we study another metric transformation, the quotient metric space, that gives rise to the notion of quotient geometric crossover. This turns out to be a very versatile notion. We give many examples of application of the quotient geometric crossover

    CSM-466: Geometric Crossovers for Real-code Representation

    Get PDF
    Geometric crossover is a representation-independent generalization of the class of traditional mask-based crossover for binary strings. It is based on the distance of the search space seen as a metric space. Although real-code representation allows for a very familiar notion of distance, namely the Euclidean distance, there are also other distances suiting it. Also, topological transformations of the real space give rise to further notions of distance. In this paper, we study the geometric crossovers associated with these distances in a formal and very general setting and show that many preexisting genetic operators for the real-code representation are geometric crossovers. We also propose a novel methodology to remove the inherent bias of pre-existing geometric operators by formally transforming topologies to have the same effect as gluing boundaries

    Mathematical Interpretation between Genotype and Phenotype Spaces and Induced Geometric Crossovers

    Get PDF
    In this paper, we present that genotype-phenotype mapping can be theoretically interpreted using the concept of quotient space in mathematics. Quotient space can be considered as mathematically-defined phenotype space in the evolutionary computation theory. The quotient geometric crossover has the effect of reducing the search space actually searched by geometric crossover, and it introduces problem knowledge in the search by using a distance better tailored to the specific solution interpretation. Quotient geometric crossovers are directly applied to the genotype space but they have the effect of the crossovers performed on phenotype space. We give many example applications of the quotient geometric crossover

    A New Adaptive Hungarian Mating Scheme in Genetic Algorithms

    Get PDF
    In genetic algorithms, selection or mating scheme is one of the important operations. In this paper, we suggest an adaptive mating scheme using previously suggested Hungarian mating schemes. Hungarian mating schemes consist of maximizing the sum of mating distances, minimizing the sum, and random matching. We propose an algorithm to elect one of these Hungarian mating schemes. Every mated pair of solutions has to vote for the next generation mating scheme. The distance between parents and the distance between parent and offspring are considered when they vote. Well-known combinatorial optimization problems, the traveling salesperson problem, and the graph bisection problem are used for the test bed of our method. Our adaptive strategy showed better results than not only pure and previous hybrid schemes but also existing distance-based mating schemes

    A theoretical and empirical study on unbiased boundary-extended crossover for real-valued representation

    Get PDF
    Copyright © 2012 Elsevier. NOTICE: this is the author’s version of a work that was accepted for publication in Information Sciences. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Information Sciences Vol. 183 Issue 1 (2012), DOI: 10.1016/j.ins.2011.07.013We present a new crossover operator for real-coded genetic algorithms employing a novel methodology to remove the inherent bias of pre-existing crossover operators. This is done by transforming the topology of the hyper-rectangular real space by gluing opposite boundaries and designing a boundary extension method for making the fitness function smooth at the glued boundary. We show the advantages of the proposed crossover by comparing its performance with those of existing ones on test functions that are commonly used in the literature, and a nonlinear regression on a real-world dataset
    corecore