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ABSTRACT
Geometric crossover is a representation-independent gener-
alization of the class of traditional mask-based crossover for
binary strings. It is based on the distance of the search
space seen as a metric space. Although real-code represen-
tation allows for a very familiar notion of distance, namely
the Euclidean distance, there are also other distances suiting
it. Also, topological transformations of the real space give
rise to further notions of distance. In this paper, we study
the geometric crossovers associated with these distances in
a formal and very general setting and show that many pre-
existing genetic operators for the real-code representation
are geometric crossovers. We also propose a novel method-
ology to remove the inherent bias of pre-existing geometric
operators by formally transforming topologies to have the
same effect as gluing boundaries.

Keywords
Geometric crossover, real-code representation, crossover bias,
glued space

1. INTRODUCTION
Geometric crossover [5] is a representation-independent

operator defined over the distance of the search space. In-
formally, geometric crossover requires the offspring to lie be-
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tween parents. Despite its simple geometric definition, geo-
metric crossover captures the notion of “real-world” crossover:
geometric crossover generalizes many pre-existing search op-
erators for the major representations used in practice, such
as binary strings [5], permutations [7], syntactic trees [6] and
sequences [9].

The formal definition of geometric crossover enables us to
build a representation-independent theory of evolutionary
algorithms. It can also be used to guide the design of new
specific crossover operators for non-standard representations
using distances rooted on the specific representation (e.g.,
edit distances) as base for geometric crossover [7]. To be
effective, specific geometric crossover operators need to be
matched to the problem at hand. In order to embed problem
knowledge in the crossover operator, this has to be based
on a distance that is meaningful for the problem at hand.
Previously, Moraglio and Poli [6] have suggested a rule of
thumb: the distance chosen should make the resulting fitness
landscape “smooth” in some statistical sense, or in other
words, closer solutions should tend to have closer fitness.

Geometric crossover encompasses naturally combinatorial
and continuous spaces. So far we have focused on the study
of geometric crossover for combinatorial spaces and shown
that their “geometrization” is not only possible but surpris-
ingly insightful for the analysis and design of search oper-
ators. We have left to the intuition the case of continuous
space because the definition of geometric crossover seems so
natural for this space that no further investigation seems to
be required. However this is not true: continuous spaces are
as rich in variety as combinatorial spaces. Indeed, beside
the traditional Euclidean distance there are many other dis-
tances for real vectors, hence there are many different types
of geometric crossovers for real vectors with quite different
search properties and suitable for different types of contin-
uous problems.

In this paper we start to study the geometric crossovers for
continuous spaces. A natural starting point are Minkowski
distances that are simple generalizations of the Euclidean
distance. Geometric crossovers based on Minkowski dis-
tances have an inherent bias toward the center of the space.
This bias could be potentially harmful for the search. We
then study geometric crossovers for glued versions of these
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spaces for which the bias disappears. We also show that
many pre-existing recombination operators for real-vectors
are geometric crossovers.

The reminder of this paper is organized as follows. In
Section 2, we review the most frequently used genetic oper-
ators for the real-code representation. In Section 3, we in-
troduce the geometric framework. In Section 4, we present
geometric crossovers based on p-norms. In Section 5, we in-
troduce the notion of biased crossover and explain why ge-
ometric crossovers based on p-norms are biased. In Section
6, we present geometric crossovers based on glued spaces
that are unbiased. In Section 7, we show that a number of
pre-existing recombination operators for the real-code rep-
resentation are geometric and the implications of this. In
Section 8, we draw conclusions and outline future work.

2. GENETIC OPERATORS FOR
REAL-CODE REPRESENTATION

In this section we review the most frequently used recom-
bination operators for the real-code representation. These
operators are described into details in [1]. In literature
many recombination operators for real-code representation
are found. In the following we present a taxonomy of re-
combination operators that does not consider the specific
probability distribution of the offspring but only what off-
spring can be generated with probability greater than zero
given two parents. This taxonomy is important in relation
with geometric crossover because the specific class of a re-
combination operator in this taxonomy is sufficient to tell
which kind of geometric crossover it is. This will be shown
in Section 7.

There are two main families of recombination operators
[11]: discrete recombinations and blend recombinations. Blend
recombination can be distinguished into line recombinations
and box recombinations. Important variations of the last
two recombination operators are the extended-line recombi-
nation and the extended-box recombination [10].

The discrete recombination family is the straightforward
extension to real vectors of the family of mask-based crossover
operators for binary strings including n-point and uniform
crossover. The mask is still a binary vector dictating for
each position of the offspring vector from which parent the
(real) value for that position is taken.

The blend recombination family does not exchange values
between parents like discrete recombinations but it aver-
ages or blends them. Line recombination returns offspring
on the (Euclidean) line segment connecting the two par-
ents. Box recombination returns offspring in the box (hyper-
rectangle) whose diagonally opposite corners are the par-
ents. Extended-line recombination picks offspring on an
extended segment passing through the parent vectors but
extending beyond them and not only in the section be-
tween them. Analogously extended-box recombination picks
offspring on an extended box whose main diagonal passes
through the parents but extends beyond them.

The most common form of mutation for real-code vectors
generates an offspring vector by adding a vector M of ran-
dom variables with expectation zero to the parent vector.
There are two types of mutations bounded and unbounded
depending on the fact that the range of the random vari-
able is bounded or unbounded. The most frequently used
bounded mutations are the creep mutation and the single-

variable mutation and for the unbounded case is the Gaus-
sian mutation.

For the creep (or hyper-box) mutation M ∼ U([−a, a]n) is
a vector of uniform random variables where a is a parameter
defining the limits of the offspring area. This operator yields
offspring within a hyper-box centered in the parent vector.

For the single-variable mutation M is a vector in which
all entries are set to zero except for a random entry which
is a uniform random variable ∼ U([−a, a]).

Bounded mutation operators may get stuck in local op-
tima. In contrast, unbounded mutation operators guaran-
tee asymptotic global convergence. The primary unbounded
mutation is the Gaussian mutation for which M is a multi-
variate Gaussian distribution.

3. GEOMETRIC FRAMEWORK

3.1 Geometric Preliminaries
In the following we give necessary preliminary geometric

definitions and extend those introduced in [5, 6]. The fol-
lowing definitions are taken from [3].

The terms distance and metric denote any real valued
function that conforms to the axioms of identity, symmetry
and triangular inequality.

In a metric space (S, d) a closed ball is the set of the
form Bd(x; r) = {z ∈ S : d(x, z) ≤ r} where r is a positive
real number called the radius of the ball. A line segment
(or closed interval) is the set of the form [x; y]d = {z ∈
S : d(x, z) + d(z, y) = d(x, y)} where x, y ∈ S are called
extremes of the segment. Metric segment and ball general-
ize the familiar notions of segment and ball in the Euclidean
space to any metric space through distance redefinition. No-
tice that a metric segment does not coincide to a shortest
path connecting its extremes (geodesic) as in an Euclidean
space. In general, there may be more than one geodesic con-
necting two extremes; the metric segment is the union of all
geodesics.

We assign a structure to the solution set S by endowing it
with a notion of distance d. M = (S, d) is therefore a solu-
tion space and (M, f) is the corresponding fitness landscape,
where f is the fitness function over S.

3.2 Definitions of Geometric Operators
The following definitions are representation-independent

therefore applicable to any representation.

Definition 1 (Image set). The image set Im[OP ] of
a genetic operator OP is the set of all possible offspring
produced by OP .

Definition 2 (Geometric mutation). A unary oper-
ator GM is a geometric ε-mutation operator if Im[GM(x)] ⊆
Bd(x; ε) where ε is the smallest real value for which this con-
dition holds true.

Definition 3 (Geometric crossover). A binary op-
erator GX is a geometric crossover under the metric d if all
offspring are in the segment between its parents x and y, i.e.,

Im[GX(x, y)] ⊆ [x; y]d.

Definition 4 (Uniform geometric mutation).
Uniform geometric ε-mutation UGM is a geometric ε-mutation



where all z at most ε away from parent x have the same prob-
ability of being the offspring. That is, UGM(x) has the uni-
form distribution on the ball Bd(x; ε); the probability density
function becomes

fUGM (z|x) =
δ(z ∈ Bd(x; ε))

vol(Bd(x; ε))
,

where δ is a function which returns 1 if the argument is true,
0 otherwise.

Im[UGM(x)] = {z ∈ S : fUGM (z|x) > 0} = Bd(x; ε).

Definition 5 (Uniform geometric crossover).
Uniform geometric crossover UGX is a geometric crossover
where all z laying between parents x and y have the same
probability of being the offspring. That is, UGX(x, y) has
the uniform distribution on the segment [x; y]d; the probabil-
ity density function becomes

fUGX(z|x, y) =
δ(z ∈ [x; y]d)

vol([x; y]d)
.

Im[UGX(x, y)] = {z ∈ S : fUGX(z|x, y) > 0} = [x; y]d.

A number of general properties for geometric crossover
and geometric mutation have been derived in [5] where we
also showed that traditional crossover is geometric under the
Hamming distance.

3.3 Problem versus Fitness Landscape
For continuous optimization problems, more than for com-

binatorial optimization problems, there is the assumption
that problem and fitness landscape are completely inter-
changeable notions. However this is not true: the prob-
lem is simply the objective function and it does not come
with any a priori notion of distance; the fitness landscape
is the objective function plus a notion of distance. The two
concepts are normally understood as equivalent because the
Euclidean distance is taken for granted.

This assumption however is not always a good one. In
fact some problems become easier to solve when the dis-
tance chosen for the landscape is more natural for the prob-
lem addressed than the Euclidean distance. A more natural
distance gives rise to a smoother fitness landscape and the
geometric operators associated with it are likely to perform
better than those associated with the Euclidean distance. So
it is important to study geometric crossovers and geometric
mutations for real-code representation based on a number
of alternative distances.

4. GEOMETRIC CROSSOVERS
BASED ON P -NORMS

4.1 Metric Segments and Balls
Induced by p-norms

Geometric crossover depends on the metric of given space.
Although Euclidean distance is ordinarily used for Rn, there
exist many other metrics for Rn. We study geometric crossover
for real vector space under more general and abstract metric,
Minkowski distance.
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Figure 1: Metric segments induced by p-norms
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Figure 2: Metric balls induced by p-norms

Given a vector space X, norm is a real-valued function on
X satisfying the properties of positiveness, positive homo-
geneity and subadditivity. Considering Rn as a vector space,
we define p-norm on Rn, where p is a natural number.

‖x‖p =

(
nX

i=1

|xi|p
) 1

p

.

Especially, ∞-norm is defined as follows:

‖x‖∞ = max
1≤i≤n

|xi| .

Once the norm ‖·‖ is defined, we can define a metric on Rn

by d(x, y) := ‖x− y‖. The metric dp(x, y) is defined as ‖x−
y‖p on Rn. Using these metrics, the metric segment between
two points x and y on Rn under the metric dp induced by
p-norm is defined as follows:

[x; y]dp = {z ∈ Rn : ‖x− z‖p + ‖z − y‖p = ‖x− y‖p}.
Also, the metric r-ball of a point x on Rn under the metric
dp is the set

Bdp(x; r) = {z ∈ Rn : ‖x− z‖p ≤ r}.
Figure 1 and 2 show an example of metric segments and met-
ric balls on R2 for the cases that p = 1, 2 and ∞ ([x; y]d2 ⊆
[x; y]d1 and [x; y]d2 ⊆ [x; y]d∞) and a geometric crossover
under the metric d1 is also geometric under the metrics d2

and d∞ (Bd1(x; r) ⊆ Bd2(x; r) ⊆ Bd∞(x; r)). We can easily
see that a geometric crossover under the metric d2 is also
geometric under the metrics d1 and d∞.

Geometric crossover takes offspring that lies in the metric
segments. We design new geometric crossovers using the
metric segments induced by p-norms by choosing offspring
that lie in the segments.

4.2 Implementation of Geometric Crossovers
Although new crossovers are theoretically meaningful, if

they cannot be implemented efficiently, they are useless. We
consider 1-norm, 2-norm and ∞-norm, and provide methods
to implement geometric crossovers induced by the norms.

The metric induced by 2-norm is Euclidean distance. In
this case, metric segment is just the line segment that is



familiar to us. It is the convex combination of two points.
An interesting fact is that this is not unique property of
Euclidean space. If only given space has inner product, the
property that convex combination and metric segment coin-
cide holds by the following theorem.

Theorem 1. If H is an inner product space, [x; y]dH :=
{z ∈ H : ‖x − z‖ + ‖z − y‖ = ‖x − y‖} = {λx + (1 − λ)y :

0 ≤ λ ≤ 1}, where ‖x‖ := 〈x, x〉1/2.

Proof. If z = λx + (1 − λ)y for some λ such that 0 ≤
λ ≤ 1, then,

‖x− z‖+ ‖z − y‖
= ‖x− λx− (1− λ)y‖+ ‖λx + (1− λ)y − y‖
= (1− λ)‖x− y‖+ λ‖x− y‖
= ‖x− y‖.

Hence, {λx + (1− λ)y : 0 ≤ λ ≤ 1} ⊂ [x; y]dH .
Now, to show that [x; y]dH ⊂ {λx+(1−λ)y : 0 ≤ λ ≤ 1},

suppose ‖x− z‖+ ‖z − y‖ = ‖x− y‖.
‖x− z‖2 = ‖x‖2 − 2〈x, z〉+ ‖z‖2.
‖z − y‖2 = ‖z‖2 − 2〈z, y〉+ ‖y‖2.
‖x− y‖2 = ‖x‖2 − 2〈x, y〉+ ‖y‖2.
Let λ = ‖z − y‖/‖x− y‖. Then, 0 ≤ λ ≤ 1.

z − λx− (1− λ)y

= z − ‖z − y‖
‖x− y‖x−

�
1− ‖z − y‖

‖x− y‖
�

y

=
1

‖x− y‖ (‖x− y‖z − ‖z − y‖x− ‖x− z‖y)

=
1

‖x− y‖ (‖z − y‖z + ‖x− z‖z − ‖z − y‖x− ‖x− z‖y)

=
1

‖x− y‖ {‖z − y‖(z − x) + ‖x− z‖(z − y)} .

Using this formula, consider ‖z − λx− (1− λ)y‖2.

‖z − λx− (1− λ)y‖2

=
1

‖x− y‖2 ‖ ‖z − y‖(z − x) + ‖x− z‖(z − y) ‖2

=
1

‖x− y‖2 (‖z − y‖2‖x− z‖2

+ 2‖z − y‖‖x− y‖〈z − x, z − y〉+ ‖z − y‖2‖x− z‖2)
=

‖z − y‖‖x− z‖
‖x− y‖2 (2‖z − y‖‖x− z‖+ 2〈z − x, z − y〉)

=
‖z − y‖‖x− z‖
‖x− y‖2 {(‖x− z‖+ ‖z − y‖)2

− ‖x− z‖2 − ‖z − y‖2 + 2〈z − x, z − y〉}
=

‖z − y‖‖x− z‖
‖x− y‖2 (‖x− y‖2 − ‖x− z‖2

− ‖z − y‖2 + 2〈z − x, z − y〉)
=

‖z − y‖‖x− z‖
‖x− y‖2 (‖x‖2 − 2〈x, y〉+ ‖y‖2 − ‖x‖2 + 2〈x, z〉

− ‖z‖2 − ‖z‖2 + 2〈z, y〉 − ‖y‖2
+ 2‖z‖2 − 2〈z, y〉 − 2〈x, z〉+ 2〈x, y〉)

= 0.

Hence, z = λx + (1− λ)y.

UGX2(x, y)
{

λ ← a random real number in [0, 1];
for i ← 1 to n

zi ← λxi + (1− λ)yi;
return z = (z1, z2, . . . , zn);

}

Figure 3: Uniform geometric crossover under d2

Since Euclidean space has a dot product, the next corollary
is trivial.

Corollary 1. [x; y]d2 = {λx + (1− λ)y : 0 ≤ λ ≤ 1}.
Proof. For x, y ∈ Rn, define 〈x, y〉 as the dot productPn
i=1 xiyi. Then, 〈 , 〉 is the inner product and ‖x‖22 =

〈x, x〉 [4].

Geometric crossover chooses offspring in the segments be-
tween parents. We can design uniform geometric crossover
UGX2 to choose a random vector in the segments between
parents as offspring. If we use the metric d2, the segment is
the convex combination of parents by Corollary 1. We im-
plement UGX2 by choosing a random real value λ between
0 and 1 and computing λx + (1 − λ)y. Figure 3 shows the
algorithm of UGX2. Traditional arithmetic crossover [2] is
a geometric crossover under d2. In arithmetic crossover, the
value of λ is fixed to 1/2; it chooses only midpoints between
parents. However, it is not uniform geometric crossover un-
der d2. A restricted version of line recombination proposed
by Mühlenbein and Schlierkamp-Voosen [11] is the uniform
geometric crossover under d2.

The metric d1 induced by 1-norm is Manhattan distance.
To implement geometric crossover under the Manhattan dis-
tance, we can get hints from Figure 1. In R2, the segment
between two points is a rectangle bounded by the coordinate
value of each point. Theorem 2 shows that this property
holds for general cases.

Theorem 2. [x; y]d1 = {(z1, z2, . . . , zn) : min(xi, yi) ≤
zi ≤ max(xi, yi), ∀i = 1, 2, . . . , n}.

Proof. Suppose that min(xi, yi) ≤ zi ≤ max(xi, yi) for
each i = 1, 2, . . . , n. Then,

Pn
i=1 |xi − zi|+

Pn
i=1 |zi − yi| =Pn

i=1(|xi−zi|+|zi−yi|). For each i, if xi ≥ yi, yi ≤ zi ≤ xi,
and hence |xi−zi|+ |zi−yi| = xi−yi = |xi−yi|. If xi < yi,
xi ≤ zi ≤ yi, and hence |xi−zi|+ |zi−yi| = −xi +yi = |xi−
yi|. Hence,

Pn
i=1 |xi − zi|+

Pn
i=1 |zi − yi| =

Pn
i=1 |xi − yi|.

This implies that z ∈ [x; y]d1 .
Now, suppose that

Pn
i=1 |xi−zi|+

Pn
i=1 |zi−yi| =

Pn
i=1 |xi−

yi|. Assume that min(xi, yi) ≤ zi ≤ max(xi, yi) does not
hold for all i. That is, there exists k such that zk > max(xk, yk)
or zk < min(xk, yk).

If zk > max(xk, yk),
Pn

i=1 |xi − yi| =
Pn

i=1 |xi − zi| +Pn
i=1 |zi − yi| =

P
i6=k(|xi − zi| + |zi − yi|) + |xk − zk| +

|zk − yk| ≥
P

i6=k(|xi − zi| + |zi − yi|) + 2zk − xk − yk. If
xk ≥ yk, zk ≤ xk. This contradicts the assumption that
zk > max(xk, yk). If xk < yk, zk ≤ yk. This is also a
contradiction.

In the case that zk < min(xk, yk), we can also obtain a
contradiction in a similar way. So, we showed that

Pn
i=1 |xi−

zi|+
Pn

i=1 |zi − yi| =
Pn

i=1 |xi − yi| for all i.



UGX1(x, y)
{

for i ← 1 to n
zi ← a random real number in [min(xi, yi), max(xi, yi)];

return z = (z1, z2, . . . , zn);
}

Figure 4: Uniform geometric crossover under d1

Since the segment under d1 is a region bounded by co-
ordinate value of each point, we design uniform geometric
crossover UGX1 by choosing a random real number between
two coordinate values for each coordinate. Figure 4 shows
this algorithm. Traditional n-point/uniform crossovers (dis-
crete recombinations) are geometric under d1 since it chooses
extreme points of the segment under d1 as offspring. How-
ever, they are not uniform geometric crossover under d1. A
restricted version of intermediate recombination (box recom-
bination) proposed by Mühlenbein and Schlierkamp-Voosen
[11] is the uniform geometric crossover under d1.

In Figure 1, [x; y]d∞ is the parallelogram of which sides
have the slope ±1. For higher dimensional cases, we can
also guess that the shape of the segment is something of
which surfaces (hyperplanes) have the slope ±1. Theorem 3
represents [x; y]d∞ formally.

Theorem 3. Let k be the one of the indices such that
‖x−y‖∞ = |xk−yk|. If xk ≥ yk, [x; y]d∞ = {(z1, z2, . . . , zn) :
min(xk, yk) ≤ zk ≤ max(xk, yk) and for each i, |xi − zi| ≤
|xk − zk| and |zi − yi| ≤ |zk − yk|}.

Proof. Let z ∈ [x; y]d∞ . Then, ‖x− z‖∞ + ‖z − y‖∞ =
‖x−y‖∞. There exist s and t satisfying ‖x−z‖∞ = |xs−zs|
and ‖z − y‖∞ = |zt − yt|, i.e., |xs − zs| ≥ |xi − zi| and
|zt − yt| ≥ |zi − yi| for all i.

The above formula can be rewritten as |xs−zs|+|zt−yt| =
|xk−yk|. Then, |zt−yt| = |xk−yk|−|xs−zs| ≥ |zk−yk|. So,
|xs − zs| ≤ |xk − yk| − |zk − yk| ≤ |(xk − yk)− (zk − yk)| =
|xk − zk|. This implies |xs − zs| = |xk − zk|. Similarly,
|zt − yt| = |zk − yk|.
|xs− zs|+ |zt− yt| = |xk − zk|+ |zk − yk| = |xk − yk|, i.e.,

zk ∈ [xk; yk]d1 in R. Hence, min(xk, yk) ≤ zk ≤ max(xk, yk)
by Theorem 2. Moreover, for all i, |xi − zi| ≤ |xs − zs| ≤
|xk − zk| and |zi − yi| ≤ |zt − yt| ≤ |zk − yk|.

Now, assume that z satisfies min(xk, yk) ≤ zk ≤ max(xk, yk)
and for each i, |xi − zi| ≤ |xk − zk| and |zi − yi| ≤ |zk − yk|
hold. Then, ‖x− z‖∞ = |xk − zk| and ‖z− y‖∞ = |zk − yk|.
If xk ≥ yk, ‖x − z‖∞ + ‖z − y‖∞ = |xk − zk| + |zk − yk| =
xk − zk + zk − yk = xk − yk = ‖x − y‖∞. If yk > xk,
‖x−z‖∞+‖z−y‖∞ = |xk−zk|+|zk−yk| = zk−xk+yk−zk =
yk − xk = ‖x− y‖∞. So, z ∈ [x; y]d∞ .

By Theorem 3, the implementation of UGX∞ has become
possible though we cannot imagine its shape in the concrete.

The algorithm for UGX∞ is given in Figure 5. We first
choose the index k such that ‖x − y‖∞ = |xk − yk|, i.e.,
|xk − yk| ≥ |xi − yi| for every i. And then, we choose the
value of zk between xk and yk. Using this value of zk, for
each coordinate, we choose zi satisfying |xi− zi| ≤ |xk − zk|
and |zi − yi| ≤ |zk − yk|. This is done by calculating the
minimum and maximum values that zi can be and choosing
a random real number between them.

UGX∞(x, y)
{

k ← argmax
1≤i≤n

|xi − yi|;
zk ← a random real number in [min(xk, yk), max(xk, yk)];
for i ← 1 to n

zi ← a random real number in
[max(xi − |xk − zk|, yi − |zk − yk|),

min(xi + |xk − zk|, yi + |zk − yk|)];
return z = (z1, z2, . . . , zn);

}

Figure 5: Uniform geometric crossover under d∞

5. CROSSOVER BIAS
Let us introduce the notion of bias of an operator. Let

OP be a search operator z = OP (p1, p2, . . . , pn) where pis
are the parents in S and z ∈ S is the offspring. We say
that a search operator is unbiased if we choose parents inde-
pendently and uniformly in the solution set S we obtain
offspring uniformly at random in the solution set S. In
formulas: OP is unbiased if pi ∼ U(S) and independent
implies z = OP (p1, p2, . . . , pn) ∼ U(S). Biasedness is the
inherent preference of a search operator for specific areas of
the search space and it is an important search property of a
search operator: an evolutionary algorithm using that oper-
ator, without selection, is attracted to the areas the search
operator prefers. Arguably, also when selection is present,
the operator bias acts as a background force that makes the
search more keen to go toward the areas preferred by the
search operator. This is not necessarily bad if the bias is
toward the optimum or an area with high-quality solutions.
However, it is bad if the bias is toward an area of poor-
quality solutions. When the location of good solutions of a
problem is not known, it would be better to leave selection
to guide the search on the basis of the fitness values only.
In fact the operator bias could be potentially deleterious for
performances because it interferes with selection.

Interestingly, uniform geometric crossover is unbiased on
the Hamming space but the very same operator is biased
toward the center on the Euclidean space. This is easy to
verify by picking random parents in the two spaces and gen-
erating offspring in the respective segments. One way to
compensate for such a bias in Euclidean and Manhattan
spaces is using extended-line and extended-box recombina-
tions. Another way to compensate for the bias relies on
understanding the origin of this bias.

So, what is the origin of the different bias of geomet-
ric crossover for the Hamming space and for the Euclidean
space? The answer relies on the notion of isotropy of the un-
derlaying metric space. Informally, a metric space is isotropic
if all its points are equivalent: every point has the same
properties in terms of distance. The Euclidean space, more
precisely a bounded hyper-rectangular subspace of the Eu-
clidean space, is not isotropic because the existence of the
boundaries introduces an asymmetry on the types of points:
the space has boundaries and has a center, hence each point
is different from each other depending on how far from the
boundaries and the center it is. Each point has a special
status, hence the space is not isotropic. Conversely, in the
Hamming space, each point is the center and at the same
time is a boundary point, so each point has the same sta-
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Figure 6: Glued space on R2. This can be considered
as a quotient space.

tus and the Hamming space is therefore isotropic. Let us
consider now a new metric space obtained by gluing the op-
posite extremities of the Euclidean hyper-rectangle; in the
case of a simple two-dimensional rectangle the space we ob-
tain is the surface of a torus. Notice that the metric asso-
ciated with this space is not the Euclidean metric anymore,
because points that were at opposite sides of the rectangle
are close to each other in the new space. The new space is
isotropic because the boundaries, that are the origin of the
inhomogeneity of types of points in the Euclidean space, are
not there anymore. The uniform geometric crossover based
on this new space is unbiased because there cannot be bias
toward the center given that every point is the center of
the new space as in the case of the Hamming space. It is
therefore the isotropy of the space that causes the bias of the
search operator to cease being. In the next section we present
geometric crossovers for glued spaces in a formal setting.

6. GEOMETRIC CROSSOVERS
IN GLUED SPACE

In general, solution space of real-coded problems has the
range. Let the solution space X be {x ∈ Rn : li ≤ xi <
ui for each i} where l = (l1, l2, . . . , ln) is a lower bound and
u = (u1, u2, . . . , un) is an upper bound. If we apply geomet-
ric crossover on this bounded domain, offspring have bias
toward the center of the space. One method to eliminate
this bias is gluing the boundaries by identifying ui to li for
each i. Figure 6 shows this glued space for R2 case.

Formally, the glued space is considered as a quotient space.
To make a quotient space which gives an effect equivalent
to gluing, equivalence relation on Rn is defined as follows:

Definition 6. x ∼ y if and only if for each i = 1, 2, . . . , n,
there exists ai ∈ Z such that xi − yi = ai(ui − li).

Theorem 4. The relation ∼ is an equivalence relation.

Proof. Assume that x, y and z ∈ Rn.
(i) Reflexive: xi − xi = 0(ui − li) for each i = 1, 2, . . . , n.
Since 0 ∈ Z, x ∼ x.
(ii) Symmetric: If x ∼ y, for each i = 1, 2, . . . , n, there
exists ai ∈ Z such that xi−yi = ai(ui− li). Then, yi−xi =
−(xi − yi) = −ai|ui − li| and −ai ∈ Z. Hence, y ∼ x.
(iii) Transitive: If x ∼ y and y ∼ z, for each i = 1, 2, . . . , n,
there exists ai ∈ Z such that xi− yi = ai(ui− li) and bi ∈ Z
such that yi−zi = bi(ui− li). xi−zi = (xi−yi)+(yi−zi) =
ai(ui − li) + bi(ui − li) = (ai + bi)(ui − li). ai + bi ∈ Z since
ai and bi ∈ Z. So, x ∼ z.

Let 〈x〉 be the equivalence class of x ∈ Rn. In Figure 7,
points indicated by bullets are in the same equivalent class
on R2.

X can be considered as a quotient set Rn/ ∼ by consid-
ering x ∈ X as x̄ ∈ Rn/ ∼. However, this gives another

x

Figure 7: Equivalent class of x on R2. The shadowed
rectangle represents given bounded real space X.
Each rectangle has the same size as X.

topology to the same set. We need to define a distance tai-
lored to this new topology. We define a new distance on
Rn/ ∼ using the distance on Rn. Let x, y ∈ X.

Definition 7. Let x, y ∈ X. If d is a distance for Rn,

dq(x, y) := min
x′∈〈x〉,y′∈〈y〉

d(x′, y′).

Theorem 5. If the distance d is induced by a norm, dq

is a metric for X.

Proof. Assume that x, y and z ∈ X.
(i) Identity: 0 ≤ dq(x, x) ≤ d(x, x) ≤ 0.
(ii) Symmetry: dq(x, y) = d(x′, y′) for some x′ ∈ 〈x〉 and
y′ ∈ 〈y〉. Then, dq(x, y) = d(x′, y′) = d(y′, x′) ≥ dq(y, x).
Similarly, dq(y, x) ≥ dq(x, y).
(iii) Triangular inequality: dq(x, y) + dq(y, z) = d(x′, y′) +
d(y′′, z′′) for some x′ ∈ 〈x〉, y′, y′′ ∈ 〈y〉, and z′′ ∈ 〈z〉. Since
d is induced by a norm, d(y′′, z′′) = d(y′′−y′′+y′, z′′−y′′+
y′) = d(y′, z′′ − y′′ + y′). Since y′i − y′′i = ki|ui − li| for each
i, z′′ − y′′ + y′ ∈ 〈z〉. Hence,

dq(x, y) + dq(y, z) = d(x′, y′) + d(y′′, z′′)

= d(x′, y′) + d(y′, z′′ − y′′ + y′)

≥ d(x′, z′′ − y′′ + y′)

≥ dq(x, y).

It is impossible to calculate dq(x, y) considering all points
in equivalence class since the number of the points is infinite.
Fortunately, there is a practical way to calculate it.

Let x, y ∈ X. For each i, let Ti(y) = {yi, yi +(ui− li), yi−
(ui − li)} and Mi(y) = argmin

m∈Ti(y)

{|xi −m|}. Mi(y) is the set

because the number of maximizers can be more than one.
Let M(y) = {(y′1, y′2, . . . , y′n) ∈ Zn : y′i ∈ Mi(y) for each i}.

Theorem 6. Let x and y ∈ X. If a metric d is induced by
p-norm and y∗ ∈ M(y), d(x′, y′) ≥ d(x, y∗) for all x′ ∈ 〈x〉
and y′ ∈ 〈y〉, i.e., dq is well-defined and dq(x, y) = d(x, y∗).
Moreover, M(y) = {y′ ∈ 〈y〉 : dq(x, y) = d(x, y′)}.

Proof. d(x′, y′) = (
Pn

i=1 |x′i − y′i|p)1/p.
For each i, |x′i − y′i| = |x′i − y′i + xi − xi + yi − yi| =

|(xi − yi) + (x′i − xi) + (yi − y′i)|. Since x ∼ x′ and y ∼ y′,
(x′i − xi) + (yi − y′i) = ki(ui − li) for some ki ∈ Z. Then,
|x′i − y′i| = |(xi − yi) + ki(ui − li)|.
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Figure 8: Line segments on Euclidean space and
glued space

If ki ≥ 2, |(xi − yi) + ki(ui − li)| is positive since xi − yi

cannot be greater than ui − li. So, |x′i − y′i| = |(xi − yi) +
ki(ui−li)| > |(xi−yi)+(ui−li)| = |xi−{yi+(ui−li)}| ≥ |xi−
y∗i |. Similarly, in the case that ki ≤ −2, |(xi−yi)+ki(ui−li)|
is negative. Hence, |x′i − y′i| = |(xi − yi) + ki(ui − li)| >
|(xi−yi)−(ui−li)| = |xi−{yi−(ui−li)}| ≥ |xi−y∗i |. Finally,
if ki = 0, 1,−1, |x′i− y′i| = |(xi− yi)+ki(ui− li)| ≥ |xi− y∗i |
by the definition of M(y).

So, d(x′, y′) = {Pn
i=1 |x′i−y′i|p}1/p ≥ {Pn

i=1 |xi−y∗i |p}1/p =
d(x, y∗).

Now, we will show that M(y) = {y′ ∈ 〈y〉 : dq(x, y) =
d(x, y′)}. Suppose that y′ ∈ 〈y〉 satisfies dq(x, y) = d(x, y′)
but y′ /∈ M(y). Then, there exists a nonempty index set
J = {j : |xj − y′j | 6= |xj − y∗j |}. For each j ∈ J , |xj − y′j | =
|xj−yj−kj(uj−lj)|. If kj ≥ 2 or kj ≤ −2, |xj−y′j | > |xj−y∗j |
by the same way as the above. If kj = 0, 1,−1, |xj − y′j | ≥
|xj−y∗j |. By the assumption, |xj−y′j | 6= |xj−y∗j | and hence
|xj − y′j | > |xj − y∗j |. Therefore, d(x, y′) = (

Pn
i=1 |xi −

y′i|p)1/p > d(x, y∗) and it is contradiction.

According to Theorem 6, to calculate dq(x, y), we need
only to find y∗ by choosing minimizer among three elements
from Ti(y) for each coordinate and get Euclidean distance
between x and y∗. Now, the segment between x and y on
quotient space is induced by the segment between x and y∗

on Rn.

Theorem 7. If d is induced by p-norm, the line segment
[x; y]dq is the set

[

y′∈M(y)

{z ∈ X : z ∼ z′ for some z′ ∈ [x; y∗]d}.

Proof. Let y∗ ∈ M(y) and z ∼ z′ for some z′ ∈ [x; y∗]d.
Then, dq(x, z) + dq(z, y) ≤ d(x, z′) + d(z′, y∗) = d(x, y∗) =
dq(x, y∗). Since dq(x, z) + dq(z, y) ≥ dq(z, y) by triangular
property, dq(x, z) + dq(z, y) = dq(z, y). So, z ∈ [x; y]dq .

Now, let z ∈ [x; y]dq . There exist z′ such that dq(x, z) =
d(x, z′) and y′ such that dq(z, y) = d(z, y′) in Rn by The-
orem 6. Let y∗ := y′ − z + z′. Then, y∗ ∼ y′ ∼ y and
dq(x, y) = dq(x, z)+dq(z, y) = d(x, z′)+d(z, y′) = d(x, z′)+
d(z′, y′ − z + z′) = d(x, z′) + d(z′, y∗) ≥ d(x, y∗) since d is
a metric. By the definition of dq, dq(x, y) ≤ d(x, y∗) is true
and hence dq(x, y) = d(x, y∗). This implies y∗ ∈ M(y) and
d(x, z′) + d(z′, y∗) = d(x, y∗).

In Figure 8, (A) shows the segment on Euclidean space
and (B) shows the segment on glued space (quotient space).
In quotient space, segments may cross the boundaries.

7. GEOMETRICITY OF PRE-EXISTING
CROSSOVERS

In this section we consider pre-existing operators for the
real-code representation and tell whether they are geomet-
ric operators and if so for what distances. Knowing that

a recombination operator is geometric is important because
there is a growing body of theory that applies to geometric
crossovers. Also, knowing the distance for which an opera-
tor is geometric allows us to tell a priori by a simple land-
scape analysis if the operator is going to perform well or not.
Although this practice is a standard for mutation, the geo-
metric framework extends this to crossover. Alternatively,
the knowledge of a natural distance for a given problem im-
mediately tells us what geometric crossover to use because,
as a rule of thumb, the geometric crossover associated with
this distance is likely to perform well.

It is immediate to see that line recombination and box
recombination are geometric crossovers under Euclidean and
Manhattan distance respectively because offspring are in the
segments between parents under these two distances.

Discrete recombination is geometric under Manhattan dis-
tance because it can be seen as a special case of box recombi-
nation in which offspring are at the corners of the hyper-box
identified by the parents. It is easy to verify that discrete
recombination is also geometric under Hamming distance
extended to real vectors. This distance is simply the num-
ber of positions in the two vectors containing different real
values.

Are extended-line recombination and extended-box recom-
bination geometric? Let us consider the case of extended-
line recombination. Obviously this recombination is not a
geometric crossover under the Euclidean distance, because of
the possibility of generating offspring outside the Euclidean
segment between parents. However this does not exclude
that the extended line recombination may be geometric un-
der some other notion of distance. That indeed would make
it a geometric crossover. So, wouldn’t it be possible to
do some topological transformation of the underlying real
space, a gluing for example, and find a space endowed with
a distance for which segments are extended segment in the
Euclidean space? Even if this seems to be a promising way
of approaching the problem, this leads nowhere. Previously
Moraglio and Poli [8] have shown axiomatically that there
is no distance such as the extended-line crossover is geomet-
ric, hence there is no topological transformation of the space
that does the trick. So extended-line crossover is not a ge-
ometric crossover. The extended-box recombination can be
proven non-geometric analogously.

The results for real vectors extend immediately to inte-
ger vectors. Since integer vectors can be understood as a
subsets of real vectors, cardinal and ordinal recombinations
between integer vectors can be seen as special cases of re-
spectively discrete and box recombinations, so they are geo-
metric crossovers under Hamming and Manhattan distances,
respectively.

Let us now turn to mutation operators. Creep muta-
tion is the uniform geometric a-mutation under d∞. Single-
variable mutation is a geometric a-mutation under any Minkowski
distance. Gaussian mutation is a geometric δ-mutation un-
der any Minkowski distance, where δ is the semi-diameter
of the search space.

8. CONCLUSIONS AND FUTURE WORK
In this paper we have applied the geometric framework to

the real-vector representation. We have made the following
contributions.

• Although the definition of geometric crossover is fairly



intuitive for the case of Euclidean metric, there are
other distances suiting real vectors. We have stud-
ied formally and in a very general settings geomet-
ric crossovers for the family of Minkowski metrics and
given efficient algorithms to implement them.

• We have seen that geometric crossover specified for
the Minkowski metrics is a bias operator: it produces
offspring toward the center of the space with higher
probability from uniformly distributed parents. We
have explained that the origin of this bias has to be
found in the fact that these spaces are non-isotropic:
all points are not fully-symmetric in relation with the
distance.

• Minkowski spaces can be made isotropic by gluing their
opposite sides together and considering the distances
associated with these glued spaces. We have then stud-
ied formally and in full generality the unbiased geomet-
ric crossovers associated with these new spaces.

• We have also shown that a number of pre-existing re-
combination operators for real vectors are geometric
crossovers under some Minkowski distances. This is
important because it allows us to apply to them a
growing body of theoretical results for the class of ge-
ometric crossover.

In future work we want to implement the new crossovers
presented in this paper and test them on problems for which
we expect them to perform well from the study of their fit-
ness landscapes.

There are other interesting metrics associated with real
spaces of potential use for specific applications. For exam-
ple, we could consider vectors as polar coordinates instead
of Cartesian coordinates and define metrics and geometric
crossovers suited to them. These crossovers are likely to
perform well on problems that are naturally expressed in
terms of polar coordinates such as problems naturally de-
fined on a sphere, for example, finding locations of antennas
to maximize the signal coverage on the surface of the earth
respecting some constraints.

In future work we will explore more metrics for the real-
code representation and associated geometric operators in
conjunction with specific problems because this is a powerful
and straightforward way of embedding problem knowledge
in the search that has been completely neglected in the spe-
cific case of continuous optimization for which the Euclidean
distance has been always implicitly chosen.
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