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In genetic algorithms, selection or mating scheme is one of the important operations. In this paper, we suggest an adaptive mating
scheme using previously suggested Hungarian mating schemes. Hungarian mating schemes consist of maximizing the sum of
mating distances, minimizing the sum, and random matching. We propose an algorithm to elect one of these Hungarian mating
schemes. Every mated pair of solutions has to vote for the next generation mating scheme. The distance between parents and
the distance between parent and offspring are considered when they vote. Well-known combinatorial optimization problems, the
traveling salesperson problem, and the graph bisection problem are used for the test bed of our method. Our adaptive strategy
showed better results than not only pure and previous hybrid schemes but also existing distance-based mating schemes.

1. Introduction

Mating schemeor selection is one of the important operations
in genetic algorithm (GA).Most operations inGAs are closely
related to the performance. These operations interact with
each other. A small change of a key operation may cause
a dramatic change in result. Ochoa et al. [1] presented that
assortative mating is a good choice when the mutation rate is
high, while disassortative mating is a good choice when the
mutation rate is low.

In mating or selection stage, the methods of mating are
classified into three groups. The first one gives preference to
similar solutions [2, 3]. This method focuses on exploitation.
It assumes that similar solutions have higher chance to
make better solutions because they use discovered good
schemata.

The second one is dissimilar mating.Thismethod focuses
on exploration, and it tries to evade a premature convergence

and a fast diversity consumption of similar mating. It is
realized mostly by a restriction. Ramezani and Lotfi [4]
restricted mating between family solutions such as parent
and offspring. They solved function optimization problems
and obtained good results. Fernandes et al. [5] reported that
dissimilarmating outperforms a simple GA or similarmating
in vector quantization problem.

The last group tries to find a better mating scheme by
combining two ormoremating schemes. Ishibuchi et al. [6, 7]
considered the number of mating candidates.They used their
parameters to control similarity of a mated solution. They
proposed a method of changing its controlling parameter at
a middle of running. They also presented that the changing
parameter made better results (nearer to Pareto-optimal
solutions) than fixed parameters.

Galán et al. [8] proposed a mating scheme where each
individual has itsmating preference value to balance exploita-
tion and exploration. A low value of mating preference
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makes a match between solutions close to each other, while
a high mating preference makes a match between solutions
far from each other. The preference is inherited or mutated
like a normal gene. They tested their scheme in various
environments of function optimization. They showed that
their scheme outperformed randommating or a scheme with
a fixed preference value.

In this paper, we propose a new adaptive Hungarian
mating scheme. Our hybrid scheme adaptively selects a pure
scheme for the next generation with voting. The traveling
salesperson problem (TSP) and the graph bisection problem
are the test problems of our adaptive scheme. We summarize
our contributions as follows. (i) We propose a new adaptive
mating scheme, (ii) we provide a reasonable explanation for
our scheme, (iii) we show that our adaptive hybrid scheme
is more effective than any pure Hungarian scheme and a
previous simple hybrid scheme for the two test problems, and
(iv) finally we show that our scheme changes its action as the
size of problem space changes.

In comparison with the preliminary version of this paper
[9], we provide the following extended information: (i)
empirical observations and theoretical proof of the recom-
mended parameter settings, (ii) detailed results to show
the search behaviors of our algorithm, (iii) comparison of
solution qualities with existing distance-based mating meth-
ods, and (iv) analysis on computation time of the proposed
method and existing ones.

The remainder of this paper is divided into five parts.
Previously suggested Hungarian mating schemes and their
hybrid strategy are presented in Section 2. Motivation of
this study is described in Section 3. Section 4 explains
our adaptive hybrid mating scheme. In Section 5, we give
experimental results and analyze the results. In Section 6, we
draw conclusions.

2. Background

2.1. Hungarian Method. Assume a weighted complete bipar-
tite graph with bipartition (𝑋, 𝑌): 𝑋 = 𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑛/2
, 𝑌 =

𝑦
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, 𝑦
2
, . . . , 𝑦

𝑛/2
, and each edge (𝑥

𝑖
, 𝑦
𝑗
) ∈ 𝑋 × 𝑌 has its

weight 𝑤
𝑖𝑗
. For optimal matching, we consider a problem of

finding amaximum (orminimum)weight bijectivematching
as follows:

max
𝜎∈∑
𝑛/2

(

𝑛/2

∑
𝑖=1

𝑤
𝑖𝜎(𝑖)
) or min
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𝑛/2

(

𝑛/2

∑
𝑖=1

𝑤
𝑖𝜎(𝑖)
) , (1)

where 𝜎 is a permutation of size 𝑛/2.
Optimum matching can be computed by the Hungarian

method [14]. It can be computed in𝑂(𝑛3) time [15]. Avis [16]
has suggested an approximation algorithm of𝑂(𝑛2) time.The
Hungarian method has been utilized in various studies [17–
20].

2.2. HungarianMating Scheme. Recently, we suggested Hun-
garian mating schemes [10]. We divided population into the
same number of female andmale individuals.TheHungarian
method is applied to mating. In each problem, a suited

distance metric is adopted. It will be described in the next
subsection.

Figure 1 describes the mating schemes. Distribution of
an example population is illustrated in Figure 1(a). Thirty
individuals are shown: fifteen plus symbols (+) are female
solutions, and fifteen filled circles (∙) are male ones. The
Euclidean distance is adopted as the distance metric. Fig-
ure 1(b) shows a result of random mating scheme which
is called “RAND.” The result of minimizing the sum of
distances is displayed in Figure 1(c). The result is obtained
from the following formula with the Hungarian method:

min
𝜎∈∑
𝑛/2

𝑛/2

∑
𝑖=1

𝑑 (𝑚
𝑖
, 𝑓
𝜎(𝑖)
) , (2)

where 𝑚
𝑖
’s are male solutions, 𝑓

𝜎(𝑖)
’s are their mated female

ones, and 𝑑 is the Euclidean distance function.The scheme in
Figure 1(c) will be called “NEAR” in this study. Figure 1(d)
shows the result of maximizing the sum of distances. The
result is obtained from the following formula with the
Hungarian method:

max
𝜎∈∑
𝑛/2

𝑛/2

∑
𝑖=1

𝑑 (𝑚
𝑖
, 𝑓
𝜎(𝑖)
) . (3)

This scheme is called “FAR.”
NEAR method extremely concentrates on exploitation,

while FAR method extremely focuses on exploration. In
bijective mating, NEAR method minimizes the sum of
distances. It is an extreme strategy to decrease diversity and
use inherent parts of solutions. Similarly, FAR method is an
extreme method to preserve diversity.

2.3. Test Problems and Distance Metric. Our test problems
are TSP and the graph bisection problem. In TSP, a complete
undirected graph𝐺 is given. Each edge in𝐺has a nonnegative
weight. The objective of the problem is to find a minimum
tour that passes through all the vertices (i.e., Hamiltonian
cycle) of 𝐺.

Assume an undirected graph 𝐺 = (𝑉, 𝐸): 𝑉 is a vertex
set and 𝐸 is an edge set. 𝐾-way partitioning is defined
as partitioning the vertex set 𝑉 into 𝐾 disjoint subsets
𝐶
1
, 𝐶
2
, . . . , 𝐶

𝐾
. A𝐾-way partition is said to be balanced if the

difference of cardinalities between the largest and the smallest
subsets is zero or one.The cut size of a partition is the number
of edges with endpoints in different subsets of the partition.
The 𝐾-way partitioning problem is the problem of finding
a 𝐾-way balanced partition with minimum cut size. In this
paper, we set𝐾 to be equal to two and call this problem “graph
bisection.”

The distance metric is the same as that used in our pre-
vious study [10]. In TSP, for the phenotype distance metric,
the quotient swap distance [20] was used. The quotient swap
distance is defined as the smallest one among swap distances.
The swap distance between𝑋 and𝑌 is the minimum number
of swaps to make𝑋 be equal to 𝑌. In other words, between𝑋
and every shifted 𝑌 the minimum value of the swap distance
is the quotient swap distance between𝑋 and 𝑌.
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Figure 1: Hungarian mating schemes [10].

In graph bisection, for the phenotype distance metric,
the quotient Hamming distance [20] was used. Similar to
the quotient swap distance, the quotient Hamming distance
is defined as the smallest one among Hamming distances.
The Hamming distance between two strings is defined by
the number of different positions at which the corresponding
symbols are different. In other words, the quotient Hamming
distances between 𝑋 and 𝑌 are the smaller value of the
Hamming distance between𝑋 and𝑌 and that between𝑋 and
𝑌.

3. Motivation

We reported that the best Hungarian mating scheme varies
according to problems and their sizes [10]. We proposed
a simple hybrid scheme of changing the mating scheme
from NEAR to RAND at the 𝑚th generation in TSP, where
𝑚 is the number of cities. The hybrid scheme for graph

bisection changes mating scheme from RAND to FAR at
the 100th generation. Parameters 𝑚 and 100 are based on
some empirical observation. But the hybrid scheme also has
a weakness. The switching time before running of GAs was
predetermined. So it is hard to apply the method to new
problems or instances.

Galán et al. [8] reported that a self-adaptive mating
scheme can be better than traditional random mating and
their best-first mating and best-last mating. In the best-first
mating, each solution pairs up with its nearest one in the
order from the best solution to the worst one. In contrast, in
the best-last mating, each solution pairs up with its farthest
one in the order from the best solution to the worst one. The
best-first mating resembles NEAR method as the best-last
mating resembles FAR method. NEAR and FAR are extreme
cases of mating. The ideal mating scheme may exist in some
middle point of NEAR and FAR as Galán et al. [8] showed in
function optimization.
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Suggesting a new adaptive hybrid scheme of the Hungar-
ian mating schemes is our main goal. A good scheme may
(i) work irrespective of problems or instances, (ii) select its
action as environment changes, and (iii) show better results
than consistently applied pure scheme. A new scheme with
these features will be proposed.

In this paper, we show the influence of the proposed
mating scheme, not aiming to beat the state-of-the-art results
of TSP and graph bisection. Local optimization may play an
important role in making practical solutions. We do not use
any local optimization. Instead, we concentrate on balance
between exploration and exploitation with a new mating
scheme.

4. Proposed Method

4.1. Voting Rules. We assume the same number of male and
female solutions as Goh et al. did in [21]. In each generation,
our method selects FAR, RAND, or NEAR for the next
generation. Our method does not simulate three schemes
as they are. Instead, the appropriate scheme is adaptively
adopted. For that, a mating scheme for the next generation
is selected with majority voting. Every matched pair has to
vote. Our crossover operator generates two offspring, and
their gender is randomly assigned. The voting is carried
out after mutation. So our voting algorithm compares two
parents and two offspring after mutation. The rules of voting
are described by Algorithm 1. If one of the parents is the
same as its son or daughter, this pair votes for FAR scheme.
Otherwise, a ratio of distance between parents over the sum
of the mother-daughter distance and the father-son distance
is considered. In the case where the ratio is less than 𝛼, this
pair votes for FAR scheme. If the ratio is equal to or greater
than 𝛼 and less than 𝛽, this pair votes for RAND scheme.
The remaining case is where the ratio is equal to or greater
than 𝛽. In this case, this pair votes for NEAR scheme. In
the next generation, the scheme which gets the most votes is
adopted.

4.2. Parameter Setting. We set 𝛼 to be 0.5 and 𝛽 to be 1.
Figure 2 describes the median of the ratio values according
to generation for an instance of each test problem. 𝑥-
axis represents generation and 𝑦-axis represents the ratio
values.

We call the median of the ratio values after crossover
(before mutation) (thin line) BM. The median of the ratio
values after mutation (thick points) is called AM. After
crossover (before mutation), most of BM values are close
to 1. BM does not change much, while the diversity of
population decreases. On the other hand, AM drops slowly
as the diversity decreases.

A mutation operator moves an individual to nearby
space. The distribution of moving distance by a mutation is
independent of the distance between parents. The expected
value of BM is one when we use a geometric crossover [22].
It will be proven in the next subsection. AM values over
1 appear frequently when the distance between parents is
long enough. It means that we have sufficient diversity to

// input: two parents and two offspring
// output: FAR, NEAR, or RAND
// 𝑑(𝑥, 𝑦): distance function between 𝑥 and 𝑦
Function vote(𝑝

1
, 𝑝
2
, 𝑜
1
, 𝑜
2
)

{

If 𝑑(𝑝
1
, 𝑝
2
) = 0, 𝑑(𝑝

1
, 𝑜
1
) = 0, or 𝑑(𝑜

2
, 𝑝
2
) = 0 then

return FAR;
end if
ratio← 𝑑(𝑝

1
, 𝑝
2
)/(𝑑(𝑝

1
, 𝑜
1
) + 𝑑(𝑜

2
, 𝑝
2
));

if ratio < 𝛼 then
return FAR;

end if
if 𝛼 ≤ ratio < 𝛽 then
return RAND;

end if
if ratio ≥ 𝛽 then
return NEAR;

end if
}

Algorithm 1: Voting rules.

consume. So a family votes for NEAR. Besides, the lower
bound of BM is 0.5 when we use a geometric crossover. It
will also be proven in the next subsection. AM values below
0.5 appear due to mutation effect. They are observed when
the distance between parents is very close to 0. So a family
votes for FAR. In other words, an influence of the mutation
is estimated by the distance between parents. High influence
of the mutation or a low AM value means that the matched
parents are too close to each other to produce new solutions,
while low influence of themutation or a highAMvaluemeans
that the parents are far from each other so we can match
nearer solutions.

4.3. Theoretical Support. A binary crossover operator is
geometric if all offspring are in a convex segment between
parents. That is, 𝑑(𝑝

1
, 𝑝
2
) = 𝑑(𝑝

1
, 𝑜) + 𝑑(𝑜, 𝑝

2
), where

𝑑(𝑝
1
, 𝑝
2
) is a distance between 𝑝

1
and 𝑝

2
, 𝑝
𝑖
’s are parents,

and 𝑜 is an offspring obtained from a geometric crossover.
Let 𝐷 be the distance between both parents. We assume that
𝐷 = 𝑑(𝑝

1
, 𝑝
2
) ̸= 0, crossover is geometric [22], 𝑝

1
̸= 𝑝
2
,

𝑝
1
̸= 𝑜
1
, and 𝑝

2
̸= 𝑜
2
. We remind the reader that our ratio

value is defined as

𝑑 (𝑝
1
, 𝑝
2
)

𝑑 (𝑝
1
, 𝑜
1
) + 𝑑 (𝑜

2
, 𝑝
2
)
, (4)

where 𝑜
1
and 𝑜

2
are offspring obtained from a geometric

crossover between 𝑝
1
and 𝑝

2
.

Proposition 1. Under these assumptions, the expected value of
one’s ratio is 1. That is,

𝐸[
𝑑 (𝑝
1
, 𝑝
2
)

𝑑 (𝑝
1
, 𝑜
1
) + 𝑑 (𝑜
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, 𝑝
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)
] = 1. (5)
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Figure 2: Median of ratio values according to generation.

Proof. It is enough to show that
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Proposition 2. Under the same assumptions, the lower bound
of one’s ratio value is 0.5. That is,

𝑑 (𝑝
1
, 𝑝
2
)

𝑑 (𝑝
1
, 𝑜
1
) + 𝑑 (𝑜

2
, 𝑝
2
)
≥
1

2
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Proof. By the assumption of geometric crossover,
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1
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2
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1
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1
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𝑑 (𝑝
1
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By summing the above inequalities, 2𝑑(𝑝
1
, 𝑝
2
) ≥ 𝑑(𝑝

1
, 𝑜
1
) +

𝑑(𝑜
2
, 𝑝
2
). Hence, we obtain

𝑑 (𝑝
1
, 𝑝
2
)

𝑑 (𝑝
1
, 𝑜
1
) + 𝑑 (𝑜

2
, 𝑝
2
)
≥
1

2
. (9)

5. Experiments

5.1. Tested GA. We use a generational GA for test. Each
solution is bijectivelymatchedwith opposite gender. A couple
of individuals produce one female solution and one male
solution. The genders are randomly assigned. We used 50
female and male individuals. We applied elitism [23] as a
replacement strategy in both genders. Fifty best solutions
remained for the next generation among previous 50 parents
and new 50 offspring. Table 1 gives the other genetic operator
settings.

5.2. Traveling Salesman Problem. From TSPLIB [24], four
Euclidean instances are selected: berlin52, kroA100, bier127,
and pr152. In each instance, the number of cities is repre-
sented in the right part of the name.

Figure 3 displays the fitness of the best individual accord-
ing to generation.The average of the best fitness values (Avg)
and the standard deviation (Std) per 200 generations are
shown in Table 2.Method “single best” denotes the best single
result among RAND, NEAR, and FAR in each generation.
Method “simple hybrid” is the strategy that changes mating
scheme once to a proper one. It was introduced in our
previous work [10]. The results of all figures and tables are
the average values over 1,000 runs.
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Table 1: Genetic parameter settings.

TSP Graph bisection problem
Representation Order-based encoding Assignment of one gene for each vertex (zero or one)
Recombination Partially matched crossover [11] One-point crossover
Mutation Double-bridge kick move [12] (50%) Random swap of some pairs of genes (50%)
Repair — Random repair until partition is feasible
Stopping criterion 1,000 generations 500 generations

Table 2: Results of TSP.

Problem
instance Method Gen 200 Gen 400 Gen 600 Gen 800 Final (= 1000)

Avg (Std) Avg (Std) Avg (Std) Avg (Std) Avg (Std)

berlin52
Single best 1.11e4 (5.59e2) 9.71e3 (4.23e2) 9.34e3 (3.26e2) 9.71e3 (2.85e2) 9.07e3 (3.08e2)

Simple hybrid 1.08e4 (4.34e2) 9.72e3 (3.75e2) 9.39e3 (3.48e2) 9.22e3 (3.37e2) 9.10e3 (3.18e2)
New method 1.07e4 (4.68e2) 9.63e3 (3.69e2) 9.30e4 (3.45e2) 9.13e3 (3.23e2) 9.02e3 (3.09e2)

kroA100
Single best 6.87e4 (4.10e3) 4.84e4 (2.50e3) 4.13e4 (1.71e3) 3.85e4 (1.80e3) 3.65e4 (9.03e2)

Simple hybrid 6.62e4 (3.20e3) 4.76e4 (2.22e3) 4.10e4 (1.74e3) 3.78e4 (1.58e3) 3.60e4 (1.41e3)
New method 6.78e4 (4.09e3) 4.79e4 (2.40e3) 4.04e4 (1.76e3) 3.71e4 (1.56e3) 3.51e4 (1.48e3)

bier127
Single best 3.36e5 (9.09e3) 2.52e5 (9.44e3) 2.18e5 (7.03e3) 2.00e5 (6.76e3) 1.90e5 (2.25e3)

Simple hybrid 3.27e5 (1.09e4) 2.49e5 (9.06e3) 2.16e5 (7.22e3) 1.99e5 (6.70e3) 1.89e5 (6.53e3)
New method 3.38e5 (1.38e4) 2.52e5 (9.79e3) 2.57e5 (7.83e3) 1.97e5 (6.80e3) 1.87e5 (6.20e3)

pr152
Single best 5.07e5 (1.66e4) 3.28e5 (3.90e4) 2.47e5 (1.36e4) 2.05e5 (1.13e4) 1.81e5 (8.36e3)

Simple hybrid 4.78e5 (1.75e4) 3.14e5 (1.59e4) 2.40e5 (1.32e4) 2.01e5 (1.12e4) 1.79e5 (9.39e3)
New method 5.09e5 (2.65e4) 3.30e5 (2.21e4) 2.45e5 (1.60e4) 2.01e5 (1.23e4) 1.76e5 (1.00e4)

CPU: Intel Xeon E5530 2.40GHz. Average from 1,000 runs.
Avg: average (the smaller, the better); Std: standard deviation.

Table 3: Statistical test of TSP.

Problem instance Compared method 𝑡-test 𝑝 value

berlin52 Single best + 1.33e − 03
Simple hybrid + 5.71e − 09

kroA100 Single best + 1.0e − 103
Simple hybrid + 4.01e − 42

bier127 Single best + 2.41e − 42
Simple hybrid + 9.72e − 18

pr152 Single best + 4.46e − 26
Simple hybrid + 2.01e − 10

𝑝 value: the smaller, the more significant.
+: significantly better under level 1.00e − 02.

In early stages of each run, the simple hybrid method
showed the best fitness. But at the end of each run, our
method outperformed the others for all instances.

Table 3 shows the statistical test result of significance for
Table 2.We usedWelch’s 𝑡-test [25]. 𝑡-value of𝐴−𝐵 in Table 3
is computed as follows:

𝑡 =
𝑋
𝐴
− 𝑋
𝐵

√𝑆2
𝐴
/𝑛
𝐴
+ 𝑆2
𝐵
/𝑛
𝐵

, (10)

where 𝑋
𝐴
is the average of 𝐴, 𝑆

𝐴
is the standard deviation of

𝐴, and 𝑛
𝐴
is the test number of𝐴. The more significant result

causes the lower 𝑝 value. In most cases, 𝑝 values are very
close to zero. A plus mark (+) denotes that our scheme has
passed 𝑡-test under significance level, 0.01. For all instances,
our scheme is significantly better than the others.

Figure 4 shows the average voting rate of three schemes.
The graph shows the average over 1,000 runs. In the early
stage, RAND and NEAR get higher chance to be elected.
NEAR is rarely selected in the early stage. As the diversity
decreases, supporters of FAR increase. At the end of each
run, almost all families vote for FAR. When we compare four
instances in Figure 4, we can conclude that our method is
adaptive. Consuming a diversity in a small space is faster than
that in a large space. So our algorithm changes the mating
scheme from RAND (or rarely NEAR) to FAR. The speed of
changing scheme for instance pr152 was slower than that for
instance berlin52.

5.3. Graph Bisection Problem. We used four popular
instances with 1,000 vertices [26]. The difference of the
instances is edge density. The right part of each name (such
as 05) represents the average vertex degree.

Figure 5 illustrates the fitness of the best individual
over all generations. The results of all figures and tables
are written with the average values over 1,000 runs as in
TSP. The average of the best fitness values (Avg) and the
standard deviation (Std) per 100 generations are listed in
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Figure 3: Fitness of mating schemes in TSP (the smaller, the better).

Table 4. Method “single best” and method “simple hybrid”
are the same as in TSP. In almost all generations of all
the instances, our method outperformed the others. Table 5
shows 𝑡-test for the results in Table 4. It is conducted
in the same way as that used in TSP. In all instances
except one our scheme was significantly superior to the
others.

Figure 6 shows the average voting rate of three schemes.
While TSP showed different speed of changing schemes
according to each instance, the figures of four graph bisection
instances are almost the same as each other. Previously we
reported thatNEAR showed very poor results in this problem
[10]. With our new method, NEAR is naturally abandoned
because FAR increases very fast.

5.4. Comparison with Existing Methods. We compared our
method with existing distance-basedmating ones.We imple-
mented variants of Ishibuchi and Shibata’s [13] and Galán et
al.’s [8] methods with two same-sized genders. Ishibuchi and
Shibata’s method [13] selects one parent that is the farthest
individual from the average among the results of repeated
tournament selections of 𝛼 times. Their method selects the
other parent that is the nearest individual from the first parent
among the results of repeated tournament selections of 𝛽
times. We set 𝛼 and 𝛽 to be 9 as in [13]. The transformed
variant selects the first parent from the female solutions
and selects the second parent from the male solutions. It is
repeated until all solutions are one-to-one matched. Galán et
al.’s method [8] selects one parent that is the best. As the other
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Figure 4: Voting rates of schemes in TSP.

parent, their method selects the (𝛾 − 1)th nearest individual,
where 𝛾 is the mating preference of the first parent. The
mating preference is inherited in crossover, and it increases by
1 with probability 0.25 or decreases by 1 with probability 0.25,
inmutation.The same as the variant of Ishibuchi and Shibata’s
method [13], we made this method select the first parent
from the female solutions and the second parent from the
male solutions. It is repeated until all solutions are one-to-one
matched. All the conditions and settings excludingmating are
the same as those in the experiments of the previous sections.

Table 6 compares the solution qualities of these two exist-
ing methods and ours. For all instances of two test problems,
our method significantly outperformed the others. Table 7

compares the computation timeswith respect tomating. Each
value in Table 7 except mating proportion is measured in
seconds. Our method took more time than Galán’s method.
But our method was faster than Ishibuchi’s. Galán’s method
repeats finding the (𝛾 − 1)th nearest individual, whereas our
method maximizes (or minimizes) the sum of distances. For
graph bisection problem, computation times of instances of
our method are similar to each other because the instances
have the same number of nodes. In TSP, as the solution space
grows, the proportion of mating time decreases, because the
mating time of our method is mainly bounded by population
size. As distance scale grows, mating time increases. It can
be resolved by approximating the scale of distance values.
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Figure 5: Fitness of mating schemes in graph bisection (the smaller, the better).

Our mating method did not overburden the entire GA, and
also we expect reducing time burden through some improved
implementation.

6. Concluding Remarks

We analyzed the proposed adaptive hybrid mating scheme
for TSP and graph bisection. FAR scheme is biased on
exploitation, while NEAR scheme is biased on exploitation.
Our mating scheme assesses the distance of the matched par-
ents with their offspring. With this assessment, our adaptive
scheme tries to find a balanced point between exploration

and exploitation in each generation. We also compared the
proposed method with two existing distance-based methods.
The proposed method showed better performance than the
two existing methods.

We set the threshold parameters as 0.5 and 1.0 with some
observation and the values are theoretically justified. But we
expect that the method of dynamically adjusting these values
may produce better results. Real-coded problems may have
different features from combinatorial optimization.With our
scheme, more various problems such as function optimiza-
tion can be tested. There are still opportunities for further
enhancements and we will study the presented method
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Table 4: Results of graph bisection.

Problem
instance Method Gen 100 Gen 200 Gen 300 Gen 400 Final (= 500)

Avg (Std) Avg (Std) Avg (Std) Avg (Std) Avg (Std)

G1000.2.5
Single best 4.48e2 (1.10e1) 3.71e2 (9.72e0) 3.19e2 (1.17e1) 2.83e2 (1.02e1) 2.57e2 (9.27e0)

Simple hybrid 4.50e2 (1.17e1) 3.66e2 (9.36e0) 3.14e2 (9.03e0) 2.80e2 (8.82e0) 2.55e2 (1.02e1)
New method 4.44e2 (1.16e1) 3.62e2 (9.55e0) 3.11e2 (9.18e0) 2.78e2 (8.77e0) 2.54e2 (8.68e0)

G1000.20
Single best 4.58e3 (3.11e1) 4.30e3 (2.78e1) 4.15e3 (2.70e1) 4.04e3 (3.16e1) 3.96e3 (3.00e1)

Simple hybrid 4.53e3 (3.11e1) 4.29e3 (2.83e1) 4.13e3 (2.78e1) 4.03e3 (2.72e1) 3.96e3 (2.71e1)
New method 4.51e3 (3.43e1) 4.28e3 (2.90e1) 4.13e3 (2.72e1) 4.02e3 (2.64e1) 3.95e3 (2.61e1)

U1000.05
Single best 8.71e2 (2.14e1) 6.96e2 (3.11e1) 5.58e2 (2.77e1) 4.56e2 (2.55e1) 3.80e2 (2.41e1)

Simple hybrid 8.75e2 (2.20e1) 6.86e2 (2.25e1) 5.52e2 (2.26e1) 4.51e2 (2.26e1) 3.76e2 (2.28e1)
New method 8.64e2 (2.26e1) 6.76e2 (2.24e1) 5.44e2 (2.23e1) 4.45e2 (2.24e1) 3.71e2 (2.20e1)

U1000.40
Single best 7.53e3 (1.32e2) 6.44e3 (1.77e2) 5.55e3 (2.06e2) 4.79e3 (2.39e2) 4.16e3 (2.64e2)

Simple hybrid 7.55e3 (1.32e1) 6.46e3 (1.77e2) 5.57e3 (2.14e2) 4.81e3 (2.48e2) 4.18e3 (2.74e2)
New method 7.48e3 (1.34e2) 6.40e3 (1.27e2) 5.50e3 (2.03e2) 4.76e3 (2.35e2) 4.14e3 (2.65e2)

CPU: Intel Xeon E5530 2.40GHz. Average from 1,000 runs.
Avg: average (the smaller, the better); Std: standard deviation.

Table 5: Statistical test of graph bisection.

Problem instance Compared method 𝑡-test 𝑝 value

G1000.2.5 Single best + 5.66e − 10
Simple hybrid + 2.44e − 03

G1000.20 Single best + 2.69e − 08
Simple hybrid + 5.30e − 03

U1000.05 Single best + 2.42e − 16
Simple hybrid + 1.32e − 07

U1000.40 Single best ∼ 6.23e − 02
Simple hybrid + 2.62e − 04

𝑝 value: the smaller, the more significant.
+: significantly better under level 1.00e − 02.
∼: not significantly different under level 1.00e − 02.

Table 6: Comparison of results on two test problems.

Problem instance Our method Galán et al. [8] Ishibuchi and Shibata [13]
Avg Std Avg Std 𝑡-test 𝑝 value Avg Std 𝑡-test 𝑝 value

berlin52 9.02e3 3.09e2 9.27e3 3.32e2 + 1.6e − 59 9.24e3 3.38e2 + 4.4e − 45
kroA100 3.51e4 1.48e3 3.81e4 1.60e3 + 3.5e − 228 3.77e4 1.41e3 + 9.2e − 213
bier127 1.87e5 6.20e3 1.96e5 6.78e3 + 1.2e − 158 1.97e5 6.46e3 + 4.4e − 188
pr152 1.76e5 1.00e4 1.96e5 1.12e4 + 1.6e − 227 2.00e5 1.07e4 + 3.5e − 290
G1000.2.5 2.54e2 8.68e0 3.01e2 3.13e1 + 5.2e − 248 3.04e2 1.15e1 + 0∗

G1000.20 3.95e3 2.61e1 4.09e3 9.47e1 + 1.0e − 245 4.09e3 3.21e1 + 0∗

U1000.05 3.71e2 2.20e1 4.96e2 8.40e1 + 9.7e − 246 5.18e2 2.64e1 + 0∗

U1000.40 4.14e3 2.65e2 4.99e3 5.94e2 + 5.9e − 220 5.31e3 2.23e2 + 0∗

CPU: Intel Xeon E5530 2.40GHz. Average from 1,000 runs.
Avg: average (the smaller, the better); Std: standard deviation.
𝑝 value: the smaller, the more significant.
+: significantly better under level 1.00e − 02.
∗: it means that this value is less than 1.0e − 300.
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Figure 6: Voting rates of schemes in graph bisection.

with various environments such as various crossover, muta-
tion rates, replacement, and local optimization for future
work.
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Table 7: Results of computation time.

Problem instance
Our method Galán et al. [8] Ishibuchi and Shibata [13]

Mating Total Proportion of
mating (%) Mating Total Proportion of

mating (%) Mating Total Proportion of
mating (%)

berlin52 7.68 81.49 9.4 0.63 70.31 0.9 68.31 140.07 48.5
kroA100 14.60 283.97 5.1 0.68 252.33 0.3 244.85 505.28 48.4
bier127 20.04 451.89 4.4 0.62 405.57 0.2 388.40 796.24 48.7
pr152 25.24 634.28 3.9 0.65 570.15 0.1 546.99 1119.84 48.8
G1000.2.5 8.26 54.81 15.0 0.60 45.94 1.3 9.06 55.74 16.2
G1000.20 7.76 61.91 12.5 0.56 52.74 1.1 9.10 63.39 14.3
U1000.05 8.98 56.45 15.9 0.57 47.02 1.2 8.86 55.22 16.0
U1000.40 8.15 66.63 12.2 0.50 57.95 1.0 9.02 68.41 13.1
Average CPU seconds from 1,000 runs on Intel Xeon E5530 2.40GHz.
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