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Abstract

In this paper, we present that genotype-phenotype mapping can be theoretically inter-
preted using the concept of quotient space in mathematics. Quotient space can be considered
as mathematically-defined phenotype space in the evolutionary computation theory. The
quotient geometric crossover has the effect of reducing the search space actually searched by
geometric crossover, and it introduces problem knowledge in the search by using a distance
better tailored to the specific solution interpretation. Quotient geometric crossovers are di-
rectly applied to the genotype space but they have the effect of the crossovers performed on
phenotype space. We give many example applications of the quotient geometric crossover.
Keywords: Geometric crossover, genotype-phenotype mapping, quotient metric space, quo-
tient geometric crossover.

1 Introduction

In evolutionary computation, genotype means solution representation, which is the structure
that can be stored in a computer and manipulated. Phenotype means solution itself without
any reference to how it is represented. Sometimes it is possible to have a one-to-one mapping
between genotypes and phenotypes, so the distinction between genotype and phenotype becomes
purely formal. However, in many interesting cases, phenotypes cannot be represented uniquely
by genotypes. So the same phenotype is represented by more than one genotype. In such case
we say that we have a redundant representation. For example, to represent a graph we need to
label its nodes and then we can represent it using its adjacency matrix. This representation is
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redundant because the same graph can be represented with more than one adjacency matrix by
relabeling its nodes.

There are quite a few problems in that it is hard to represent one phenotype by just one
genotype using traditional representations. Roughly speaking, redundant representation leads
to severe loss of search power in genetic algorithms, in particular, with respect to traditional
crossovers [3]. To alleviate the problems caused by redundant representation, a number of
methods such as adaptive crossover have been proposed [6, 16, 24, 31]. Among them, a tech-
nique called normalization1 is representative. It transforms the genotype of a parent to another
genotype to be consistent with the other parent so that the genotype contexts of the parents
are as similar as possible in crossover. There have been a number of successful studies using
normalization. An extensive survey about normalization is appeared in [4].

We recognized that genotype-phenotype mapping can be theoretically interpreted using the
concept of quotient space in mathematics. In this paper, we formally present the general relation
between the notion of quotient and genotype-phenotype mapping, and we study the relation
between genotype and phenotype spaces and geometric crossovers on them.

For analysis, we adopted the concept of geometric crossover [20] because it is representation-
independent and well-defined once a notion of distance in the search space is defined. In this
study, we consider only genotype and phenotype spaces that are metric spaces. So the metric
for a space is considered as the most important characteristic of its structure. This approach
enables to deal with the problem spaces more mathematically.

The remainder of the paper is organized as follows. In Section 2, we preliminarily present
some necessary mathematical notions and the geometric framework. In Section 3, the new notion
of quotient geometric crossover is introduced in connection with genotype-phenotype mapping.
In Section 4, we study several useful examples. In Section 4.1 and 4.2, we show how previous
work on groupings [14] and graphs can be recast and understood more simply in terms of quotient
geometric crossover. In such problems, quotient geometric crossover has the effect of filtering
out inherent redundancy in the solution representation. In Section 4.3, we consider symmetric
functions and their problem spaces. The usage of the quotient geometric crossover for circular
permutation encodings is discussed in Section 4.4. In Section 4.5, we show how homologous
crossover for variable-length sequences [23] can be understood as a quotient geometric crossover.
Finally we give our conclusions in Section 5.

2 Preliminaries

2.1 Mathematical Notions

In the following, we give some known mathematical definitions required to present our idea.
Given a set X and an equivalence relation ∼ on X, the equivalence class of an element a in

X is the subset of all elements in X that are equivalent to a:

ā = {x ∈ X : a ∼ x}.
1The term of normalization is firstly appeared in [11]. However, it is based on the adaptive crossovers proposed

in [16, 24].
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The set of all equivalence classes in X given an equivalence relation ∼ is usually denoted by
X/∼ and called the quotient set of X by ∼. This operation can be thought (very informally) as
the act of “dividing” the input set by the equivalence relation. The quotient set is considered
as the set with all the equivalent points identified as a point.

Next, group [8] is introduced. A group is an algebraic structure consisting of a set together
with an operation that combines any two of its elements to form a third element. To qualify
as a group, the set and operation must satisfy a few conditions called group axioms, namely
associativity, identity, and invertibility. Formally it is defined as follows:

Definition 1 (Group). A group (G, ∗) is a set G closed under a binary operation ∗, such that
the following axioms are satisfied:
(i) Associativity: for all a, b, c ∈ G, we have

(a ∗ b) ∗ c = a ∗ (b ∗ c).

(ii) Identity: there is an element e in G such that for all x ∈ G,

e ∗ x = x ∗ e = x.

(iii) Invertibility: for each a ∈ G, there is an element a−1 in G such that

a ∗ a−1 = a−1 ∗ a = e.

In this paper, we will use groups for constructing equivalence relations with good properties.
In the following, we view the problem spaces as metric spaces. It is a reasonable assumption

because the general solution spaces usually have metrics. For example, binary space has the
Hamming distance and real space has Minkowski distances including the Euclidean distance.
Formally, the term metric - or distance - denotes any real-valued function that conforms to the
axioms of identity, symmetry, and triangular inequality. Now, we introduce an isometry on a
metric space.

Definition 2 (Isometry). Let (X, d) be a metric space. If f: X → X satisfies the condition

d(f(x), f(y)) = d(x, y)

for all x, y ∈ X, then f is called an isometry of X.

The set of isometries on X is denoted by Iso(X). Iso(X) forms a group under function compo-
sition operator. In our study, an isometry subgroup G ⊆ Iso(X) will be considered to generate
an equivalence relation for quotient metric space.

2.2 Geometric Preliminaries

In this subsection we provide some geometric definitions, which extend those introduced in
[18, 19]. The following definitions are taken from [5].

In a metric space (X, d), a line segment (or closed interval) is the set of the form [x; y]d =
{z ∈ X | d(x, z) + d(z, y) = d(x, y)}, where x, y ∈ X are called extremes of the segment. Metric
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segment generalizes the familiar notions of segment in the Euclidean space to any metric space
through distance redefinition. Notice that a metric segment does not coincide to a shortest path
connecting its extremes (geodesic) as in an Euclidean space. In general, there may be more than
one geodesic connecting two extremes; the metric segment is the union of all geodesics.

We assign a structure to the solution set X by endowing it with a notion of distance d.
M = (X, d) is therefore a solution space and (M,f) is the corresponding fitness landscape,
where f is the fitness function over X.

2.3 Geometric Crossover

Geometric crossover is a representation-independent search operator that generalizes many pre-
existing search operators for the major representations used in evolutionary algorithms, such as
binary strings [18], real vectors [18, 33], permutations [20], permutations with repetition [17],
syntactic trees [19], sequences [23], and sets [21]. It is defined in geometric terms using the
notions of line segment and ball. These notions and the corresponding genetic operators are
well-defined once a notion of distance in the search space is defined. Defining search operators
as functions of the search space is opposite to the standard way [10] in which the search space
is seen as a function of the search operators employed. This viewpoint greatly simplifies the
relationship between search operators and fitness landscape and has allowed us to give simple
rules-of-thumb to build crossover operators that are likely to perform well.

The following definitions are representation-independent therefore applicable to any repre-
sentation.

Definition 3 (Image set). The image set Im[OP ] of a genetic operator OP is the set of all
possible offspring produced by OP .

Definition 4 (Geometric crossover). A binary operator GX is a geometric crossover under the
metric d if all offspring are in the segment between its parents x and y, i.e.,

Im[GX(x, y)] ⊆ [x; y]d.

A number of general properties for geometric crossover have been derived in [18] where it was
also shown that traditional mask-based crossovers are geometric under the Hamming distance.
Moraglio and Poli also studied various crossovers for permutations, revealing that PMX (par-
tially matched crossover) [9], a well-known crossover for permutations, is geometric under swap
distance. Also, they found that cycle crossover [25], another traditional crossover for permuta-
tions, is geometric under swap distance and under the Hamming distance.

Theoretical results of metric spaces can naturally lead to interesting results for geometric
crossover. In particular, Moraglio and Poli showed that the notion of metric transformation
has great potential for geometric crossover in [22]. A metric transformation is an operator
that constructs new metric spaces from pre-existing metric spaces: it takes one or more metric
spaces as input and outputs a new metric space. The notion of metric transformation becomes
extremely interesting when considered together with distances firmly rooted in the syntactic
structure of the underlying solution representation (e.g., edit distance). In these cases it gives
rise to a simple and natural interpretation in terms of syntactic transformations.
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Moraglio and Poli extended the geometric framework introducing the notion of product
crossover associated with the Cartesian product of metric spaces in [22]. This is a very important
tool that allows one to build new geometric crossovers customized to problems with mixed
representations by combining pre-existing geometric crossovers in a straightforward way. Using
the product geometric crossover, they also showed that traditional crossovers for symbolic vectors
and blend crossovers for integer and real vectors are geometric crossover.

3 Quotient Geometric Crossover

3.1 Motivation

Geometric operators are defined as functions of the distance associated to the search space.
However, the search space does not come with the problem itself. The problem consists only of
a fitness function to optimize, that defines what a solution is and how to evaluate it, but it does
not give any structure on the solution set. The act of putting a structure over the solution set
is a part of the search algorithm design and it is a designer’s choice.

A fitness landscape is the fitness function plus a structure over the solution space. So, for
each problem, there is one fitness function but as many fitness landscapes as the number of
possible different structures over the solution set. In principle, the designer can choose the
structure to assign to the solution set completely independently from the problem at hand.
However, because the search operators are defined over such a structure, doing so would make
them decoupled from the problem at hand, hence turning the search into something very close
to random search.

To avoid such problem, one can exploit problem knowledge in the search. It can be achieved
by carefully designing the connectivity structure of the fitness landscape. For example, one can
study the objective function of the problem and select a neighborhood structure that couples the
distance between solutions and their fitness values. Once it is done, problem knowledge can be
exploited by search operators to perform better than random search, even if the search operators
are problem-independent (as is the case of geometric operators). Indeed, the fitness landscape is
a knowledge interface between the problem at hand and a formal, problem-independent search
algorithm.

Under which conditions is a landscape well-searchable by geometric operators? As a rule
of thumb, geometric crossover works well on landscapes where the closer pairs of solutions, the
more correlated their fitness values. Of course this is no surprise: the importance of land-
scape smoothness has been advocated in many different contexts and has been confirmed in
uncountable empirical studies with many neighborhood search meta-heuristics [27]. We operate
according to the following rules-of-thumb:
Rule-of-thumb 1 : if we have a good distance for the problem at hand, then we have a good
geometric crossover.
Rule-of-thumb 2 : a good distance for the problem at hand is a distance that makes the landscape
“smooth.”
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Figure 1: Diagram linking genotype, phenotype spaces, and geometric crossovers

3.2 Genotype-Phenotype Mapping

We formally present the general relation between the notion of quotient and genotype-phenotype
mapping. Let G and P be genotype space and phenotype one, respectively. Consider a genotype-
phenotype mapping g : G → P that are not injective (i.e., redundant representation). The
mapping g induces a natural equivalence relation ∼ on the set of genotypes: genotypes with
the same phenotype belong to the same class. Then the phenotype space P becomes exactly a
quotient space G/∼ of the genotype space G.

The advantage of geometric crossover is that we can formally define a geometric crossover
under the distance once a distance is defined. Then what if the quotient space G/∼ has a
distance dP induced by the distance dG of G? If so, the geometric crossover under dP would
be a natural crossover since it reflects the structure of the genotype space G by involving the
distance dG of G.

By applying the formal definition of geometric crossover to the metric spaces (G, dG) and
(P, dP ), we obtain the geometric crossovers GXG and GXP , respectively. GXG searches the
space of genotypes and GXP searches that of phenotypes. Searching the space of phenotypes
has a number of advantages: (i) it is smaller than the space of genotypes, hence quicker to
search (ii) the phenotypic distance is better tailored to the underlying problem, hence the corre-
sponding geometric crossover works better (iii) the space of phenotypes has different geometric
characteristics from the genotypic space. It can be used to remove unwanted bias from geometric
crossover.

However, the crossover GXP cannot be directly implemented because it recombines pheno-
types that are objects that cannot be directly represented. So, we propose a notion of quotient
geometric crossover to search the space of phenotypes with the crossover GXP indirectly by
manipulating the genotypes G. The relationship among G, P , and their geometric crossovers is
illustrated through a diagram in Figure 1.

In the next subsection we present more formally the concept of quotient metric space and
quotient geometric crossover in relation with genotype-phenotype mapping.
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3.3 Quotient Metric Space

Let (X, d) be a metric space and (G, ·) ⊆ Iso(X) be a subgroup of the isometry group, where
· means the function composition operator. We introduce a relation ∼G : x and y in X are
equivalent if and only if x = g(y) for some g ∈ G. Then ∼G is an equivalence relation by the
following proposition.

Proposition 1. Relation ∼G is an equivalence relation.

Proof. Assume that x, y, and z ∈ X.
(i) Reflexivity: (Since G is a group, identity map e is in G.) Since x = e(x), x ∼G x.
(ii) Symmetry: Suppose that x ∼G y, i.e., x = g(y) for some g ∈ G. There exists g−1 ∈ G since
G is a group. Then, y = g−1(x). So y ∼G x.
(iii) Transitivity: Suppose that x ∼G y and y ∼G z. x = g(y) and y = h(z) for some g and
h ∈ G. Then x = g(y) = g(h(z)) = (g ·h)(z). g ·h is in G since G is a group. Hence, x ∼G z.

For x ∈ X, equivalence class x̄ can be written as x̄ = {g(x) : g ∈ G}. Now we will give a
metric on X/∼G (usually denoted by just X/G) induced by the original metric d on X.

Definition 5 (Quotient metric). Quotient metric d̄(x̄, ȳ) is defined as min{d(x′, y′) : x′ ∈ x̄, y′ ∈
ȳ}.

It is shown that d̄ is actually a metric on X/G in the following proposition.

Proposition 2. (X/G, d̄) is a metric space, i.e., d̄ is a metric in X/G.

Proof. Assume that x, y, and z ∈ X.
(i) Identity: 0 ≤ d̄(x̄, x̄) ≤ d(x, x) = 0.
(ii) Symmetry: There exist x1 ∈ x̄ and y1 ∈ ȳ such that d̄(x̄, ȳ) = d(x1, y1). Then, d̄(x̄, ȳ) =
d(x1, y1) = d(y1, x1) ≥ d̄(ȳ, x̄). Similarly, d̄(ȳ, x̄) ≥ d̄(x̄, ȳ). Hence, d̄(x̄, ȳ) = d(x1, y1).
(iii) Triangular inequality: There exist x1 ∈ x̄ and y1 ∈ ȳ such that d̄(x̄, ȳ) = d(x1, y1). Also,
There exist y2 ∈ ȳ and z2 ∈ z̄ such that d̄(ȳ, z̄) = d(y2, z2). Since y1 and y2 belong to the same
equivalence class, there exists g ∈ G such that y1 = g(y2). Then,

d̄(x̄, ȳ) + d̄(ȳ, z̄)

= d(x1, y1) + d(y2, z2))

= d(x1, g(y2)) + d(y2, z2)

= d(x1, g(y2)) + d(g(y2), g(z2)) (∵ g ∈ Iso(X).)

≥ d(x1, g(z2)) (∵ d is a metric in X.)

≥ d̄(x̄, z̄). (∵ z2 ∼G g(z2).)

The following proposition gives a simpler definition of quotient metric d̄.

Proposition 3. If we let d̃(x̄, ȳ) := min{d(x, y′) : y′ ∈ ȳ}, d̃(x̄, ȳ) = d̄(x̄, ȳ).
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Proof. Let x̄, ȳ ∈ X/G. It is clear that d̃(x̄, ȳ) ≥ d̄(x̄, ȳ) by the definition. Now we will show
that d̃(x̄, ȳ) ≤ d̄(x̄, ȳ). Suppose that d̄(x̄, ȳ) = d(x1, y1). Since x and x1 belong to the same
equivalence class, there exists g ∈ G such that x = g(x1). Since g is an isometry, d(x1, y1) =
d(g(x1), g(y1)) = d(x, g(y1)). g(y1) ∼G y1 ∼G y. So d̃(x̄, ȳ) ≤ d(x1, y1) = d̄(x̄, ȳ).

This metric space (X/G, d̄) is called quotient metric space. Quotient space conceptually
corresponds to the phenotype space. The line segment and the geometric crossover in the
quotient metric space are defined in the same way as in other metric spaces. However, since
in general cases solutions are represented only in the genotype space, we need to define line
segments and crossovers on (X, d), not on (X/G, d̄), to practically apply the concept.

In a metric space (X, d), a quotient line segment is the set of the form [x; y]d̄ = {z ∈
X | d̄(x̄, z̄) + d̄(z̄, ȳ) = d̄(x̄, ȳ), z̄ ∈ X/G}, where x̄, ȳ ∈ X/G.

Proposition 4. If d̄(x̄, ȳ) = d(x, y∗), [x; y∗]d ⊆ [x; y]d̄.

Proof. Let z ∈ [x; y∗]d. Then, d̄(x̄, z̄) + d̄(z̄, ȳ) ≤ d(x, z) + d(z, y∗) = d(x, y∗) = d̄(x̄, ȳ). Since
d̄(x̄, z̄) + d̄(z̄, ȳ) ≥ d̄(x̄, ȳ) by the property of triangular property, d̄(x̄, z̄) + d̄(z̄, ȳ) = d̄(x̄, ȳ). So,
z ∈ [x; y]d̄.

Now we can define the quotient geometric crossover.

Definition 6 (Quotient geometric crossover). A binary operator GXq is a quotient geometric
crossover under the metric d and the equivalence relation ∼G if all offspring are in the quotient
line segment between its parents x and y, i.e., GXq(x, y) ⊆ [x; y]d̄.

In the following we define the induced quotient crossover, which is a kind of quotient geometric
crossovers. This crossover is defined using the original geometric crossover under the original
distance d. This crossover is not only concrete but also easily implemented while the quotient
geometric crossover is conceptual.

Definition 7 (Induced quotient crossover). First, find y∗ in the equivalence class ȳ of the
second parent y such that d̄(x̄, ȳ) = d(x, y∗). Then, do the geometric crossover on X using the
first parent x and the normalized second parent y∗.

Corollary 1. Induced quotient crossover is a quotient geometric crossover.

Proof. Let y∗ ∈ ȳ be a normalized second parent i.e., d̄(x̄, ȳ) = d(x, y∗). Then, [x; y∗]d ⊆ [x; y]d̄
by Proposition 4. This satisfies the definition of quotient geometric crossover.

Induced quotient crossover can be a bridge between the original geometric crossover and the
quotient geometric crossover. We can redraw Figure 1 including the induced quotient crossover.
It is shown in Figure 2.

In the next section, we consider a number of equivalence classes for the quotient operation
and its related induced genotypic crossover transformation.
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Figure 2: Diagram linking genotype, phenotype spaces, and crossovers including induced quo-
tient crossover

4 Examples

In this section, we introduce examples of quotient geometric crossovers. In some examples
(groupings in Subsection 4.1 and sequences in Subsection 4.5), previously proposed crossovers are
reinterpreted as quotient geometric crossovers. In other examples, we introduce new crossovers
consistent with genotype-phenotype mapping of given problems using the concept of quotient
geometric crossover.

4.1 Groupings

Grouping problems [7] are commonly concerned with partitioning given item set into mutually
disjoint subsets. Examples belonging to this class of problems are multiway graph partitioning,
graph coloring, bin packing, and so on. Grouping representation is also used to solve the
joint replenishment problem, which is a well-known problem appeared in the field of industrial
engineering [26]. In this class of problems, the normalization decreased the problem difficulty
and led to notable improvement in performance.

Most normalization studies for grouping problems were focused on the k-way partitioning
problem. In the problem, the k-ary representation, in which k subsets are represented by the
integers from 0 to k−1, has been generally used. In this case, one phenotype (a k-way partition)
is represented by k! different genotypes. In the problem, a normalization method was used in [11].
Other studies for the k-way partitioning problem used the same technique [3, 12]. In the sense
that normalization pursues the minimization of genotype inconsistency among chromosomes, in
[13], Kim and Moon proposed an optimal, efficient normalization method for grouping problems
and a distance measure, the labeling-independent distance, that eliminates such dependency
completely.

Now we reinterpret the previous work in terms of quotient space. Let a, b ∈ X = {1, 2, . . . , k}n

be k-ary encodings (fixed-length vectors on a k-ary alphabet) and Σk be a set of all permutations
of length k. For each σ ∈ Σk, we can view σ as a function on X by defining σ(a) be a permuted
encoding of a by a permutation σ. For example, in the case that a = (1, 2, 3, 3, 2, 4, 1, 4) is a
4-ary encoding and σ =

(

1 2 3 4

2 4 3 1

)

∈ Σ4, σ(a) = (2, 4, 3, 3, 4, 1, 2, 1).

9



X = {1, 2, 3}4

x = (1, 2, 3, 1), y = (2, 1, 2, 3) ∈ X

Σk ȳ H(x, σ(y))

σ1 = (1, 2, 3) σ1(y) = (2, 1, 2, 3) H(x, σ1(y)) = 4
σ2 = (1, 3, 2) σ2(y) = (3, 1, 3, 2) H(x, σ2(y)) = 3
σ3 = (2, 1, 3) σ3(y) = (1, 2, 1, 3) H(x, σ3(y)) = 2
σ4 = (2, 3, 1) σ4(y) = (3, 2, 3, 1) H(x, σ4(y)) = 1
σ5 = (3, 1, 2) σ5(y) = (1, 3, 1, 2) H(x, σ5(y)) = 3
σ6 = (3, 2, 1) σ6(y) = (2, 3, 2, 1) H(x, σ6(y)) = 3

y∗ = σ4(y) = (3, 2, 3, 1)

d̄(x̄, ȳ) = 1

Figure 3: An example of grouping

It is well known that permutations form a group. Hence, Σk is a group. Moreover, when
we use the Hamming distance H on X, it is easy to check that each σ ∈ Σk is an isometry. So
∼Σk

becomes an equivalence relation and the quotient metric in Definition 5 is well defined by
Proposition 2. The quotient metric was introduced as labeling-independent distance in [13]. In
the context of this study, it is rewritten as follows:

d̄(ā, b̄) := min
σ∈Σk

H(a, σ(b)).

An example case is shown in Figure 3.
The definition of labeling-independent crossover presented in [14] is in the following.

Definition 8 (Labeling-independent crossover). Normalize the second parent to the first under
the Hamming distance. Then, do the normal crossover using the first parent and the normalized
second parent.

This crossover is exactly the induced quotient crossover. For the process of normalization, it is
possible to enumerate all k! permutations and find an optimal one among them. However, for
a large k, such a procedure is intractable. Fortunately, it can be done in O(k3) time using the
Hungarian method proposed by Kuhn [15].

In summary, we have the following.
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Example Groupings

Genotype space X {1, 2, . . . , k}n

Isometry group G Σk: a set of all permutations
inducing phenotype space X/G of length k

Metric d on X Hamming distance H

Original geometric crossover traditional crossover for vectors

Induced quotient crossover Labeling-independent crossover in [14]

From understanding normalization for grouping problems in terms of quotient geometric
crossover, we can understand the benefit of normalization in terms of landscape analysis. We
have already done this in our previous work [17].

4.2 Graphs

In this subsection, we consider any problem naturally defined over a graph in which the fitness of
the solution does not depend on the labels on the nodes but only on the structural relationship,
i.e., edge between nodes.

Formally, let A ∈ Mn be the adjacency matrix of a labeled graph using labels of n nodes
and let Pn be a set of all n × n permutation matrices2. Then, for each permutation matrix
P ∈ Pn, the matrix PAP T means the labeled graph obtained by relabeling A according to the
permutation represented by P . The fitness f : Mn → R satisfies that for every A ∈ Mn and
every permutation matrix P , f(A) = f(PAP T ).

Let (Mn,H) be a metric space on the labeled graphs under the Hamming distance H. Notice
that this metric is labeling-dependent. In particular, H(A,PAP T ) may not be zero although A
and PAP T represent the same structure. If A is equal to PBP T for some permutation matrix
P , we define A and B to be in relation ∼Pn

, i.e., A ∼Pn
B. Since a set of permutation matrices

Pn forms a group, the relation ∼Pn
is an equivalence relation by Proposition 1.

The equivalence class Ā is represented as follows:

Ā := {PA : P ∈ Pn}.
It corresponds to an unlabeled graph and the quotient space Mn/Pn can be understood as
unlabeled-graph space. Mn/Pn is a quotient metric space by Proposition 2. So we obtain induced
quotient metric on Mn/Pn. It can be written as follows:

d̄(Ā, B̄) = min
P∈Pn

H(A,PB).

An example for graphs is shown in Figure 4.
Now we design induced quotient crossover. In this example, the process of finding the

normalized second parent y∗ can be understood as graph matching in terms of graphs which are
not adjacency matrices.

Definition 9 (Induced quotient crossover for graphs). Do the graph matching of the second
parent B to the first A under the Hamming distance H, i.e.,

B∗ := argmin
B′∈B̄

H(A,B′).

2 Permutation matrix is a (0, 1)-matrix with exactly one 1 in every row and column.
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0 1 0
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1 1
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1 1 0



 H(A,P1BP T
1

) = 4

P2 =





1 0 0
0 0 1
0 1 0



 P2BP T
2

=





0 1 0
1 0 1
0 1 0



 H(A,P2BP T
2

) = 0

P3 =





0 1 0
1 0 0
0 0 1



 P3BP T
3

=





0 0 1
0 0 1
1 1 0



 H(A,P3BP T
3

) = 4

P4 =





0 1 0
0 0 1
1 0 0



 P4BP T
4

=





0 1 0
1 0 1
0 1 0



 H(A,P4BP T
4

) = 0

P5 =





0 0 1
1 0 0
0 1 0



 P5BP T
5

=





0 1 1
1 0 0
1 0 0



 H(A,P5BP T
5

) = 4

P6 =





0 0 1
0 1 0
1 0 0



 P6BP T
6

=





0 1 1
1 0 0
1 0 0



 H(A,P6BP T
6

) = 4

B∗ = P2BP T
2

or P4BP T
4

d̄(Ā, B̄) = 0

Figure 4: An example of graph
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Then, do the normal crossover using the first parent A and the graph-matched second parent B∗.

The induced quotient crossover is defined over unlabeled graphs Mn/Pn. This space is much
smaller than labeled graphs Mn. More precisely, |Mn/Pn| = |Mn|/n!. This means that the more
the labels are, the smaller the unlabeled-graph space is when compared with the labeled-graph
space. Smaller space means better performance, given the same amount of evaluations.

Now we tell how to guide the implementation using graph matching for specific geometric
crossovers. To implement the geometric crossover over unlabeled graphs, we need to use la-
beled graphs. The labeling results are necessary to represent and handle the solution, even if
in fact it is only an auxiliary function and can be considered as not being part of the problem
to solve. Graph matching before crossover allows to implement the geometric crossover on the
unlabeled-graph space. We use the corresponding geometric crossover over the auxiliary space
of the labeled graph after graph matching.

Example Graphs

Genotype space X Mn (the set of all n × n adjacency matrices)

Isometry group G Pn : a set of all n × n permutation
inducing phenotype space X/G matrices

Metric d on X Hamming distance H

Original geometric crossover traditional crossover on adjacency matrices
seen as length-n2 vectors

Induced quotient crossover graph matching before traditional crossover
(newly introduced in this study)

By applying the quotient geometric crossover on graphs, we can design a crossover better
tailored to graphs. The notion of graph matching before crossover arises directly from the defi-
nition of quotient geometric crossover. Graphs are very important because they are ubiquitous.
In future work we will test this crossover on some applications. Graphs and groupings can be
seen as particular cases of labeled structures in which the fitness of a solution depends only on
the structure and not on the specific labeling. In future work we will also study the class of
labeled structures in combination with quotient geometric crossover.

4.3 Symmetric Functions

A symmetric function on n variables x1, x2, . . . , xn is a function that is unchanged by any
permutation of its variables. That is , if f(x1, x2, . . . , xn) = f(xσ(1), xσ(2), . . . , xσ(n)) for any
permutation σ, the function f is called symmetric function. In this subsection, we consider
problems of which fitness function is symmetric. Some evolutionary studies have been made on
such problems [28, 32]. More properties about specific symmetric functions are introduced in
[2, 30].

Solutions for symmetric functions are typically represented as n-dimensional vectors, i.e.,
length-n strings. Let X be the solution space (or domain) of given symmetric function and Σn

be a set of all permutations of length n. Similarly to the example of grouping in Section 4.1,
σ ∈ Σn can be understood as a function. For example, in the case that x = (x1, x2, x3, x4) and
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X = R
3

x = (1, 4, 5), y = (3, 0, 6) ∈ X

Σ3 ȳ H(x, σ(y))

σ1 = (1, 2, 3) σ1(y) = (3, 0, 6) E(x, σ1(y)) =
√

21

σ2 = (1, 3, 2) σ2(y) = (3, 6, 0) E(x, σ2(y)) =
√

33

σ3 = (2, 1, 3) σ3(y) = (0, 3, 6) E(x, σ3(y)) =
√

3
σ4 = (2, 3, 1) σ4(y) = (0, 6, 3) E(x, σ4(y)) = 3

σ5 = (3, 1, 2) σ5(y) = (6, 3, 0) E(x, σ5(y)) =
√

51

σ6 = (3, 2, 1) σ6(y) = (6, 0, 3) E(x, σ6(y)) = 3
√

5

y∗ = σ3(y) = (0, 3, 6)

d̄(x̄, ȳ) =
√

3

Figure 5: An example of symmetric function under the Euclidean distance

σ =
(

1 2 3 4

2 4 3 1

)

∈ Σ4, gσ(x) = (x2, x4, x3, x1). As mentioned in Section 4.1, Σn is a group and each
σ is an isometry.

If X is a real space, we can use the Euclidean distance E. In that case, induced quotient
metric on X/G is defined as follows:

d̄(x̄, ȳ) := min
σ∈Σn

E(x, σ(y))

Figure 5 will be helpful to understand the quotient metric space for this case.
Induced quotient crossover can also be defined as in Definition 7. Because it uses permuta-

tion, it can be performed in O(n3) time by the Hungarian method similarly to groupings.
Summary for this Euclidean case is as follows:

Example Symmetric functions on real space

Genotype space X R
n

Isometry group G Σn: a set of all permutations
inducing phenotype space X/G of length n

Metric d on X Euclidean distance E

Original geometric crossover traditional crossover on real vectors

Induced quotient crossover rearranging before traditional crossover
(newly proposed in this study)

On the other hand, if X is a discrete space as in binary or k-ary encoding, we can use the
Hamming distance. Then, induced quotient metric on X/G is defined as follows:

d̄(x̄, ȳ) := min
σ∈Σn

H(x, σ(y))
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Induced quotient crossover for this case can also be performed in O(n3) time by the Hungarian
method. In sum, we have:

Example Symmetric functions on discrete space

Genotype space X {0, 1}n

Isometry group G Σn: a set of all permutations
inducing phenotype space X/G of length n

Metric d on X Hamming distance H

Original geometric crossover traditional crossover on binary or k-ary vectors

Induced quotient crossover rearranging before traditional crossover
(newly proposed in this study)

4.4 Circular Permutations

Here we consider the case that solutions of a problem are represented as circular permutations
such as traveling salesman problem (TSP). Gluing head and tail of the permutation obtains a
circular permutation. Circular permutations cannot be represented directly. They are typically
represented with simple permutations. Then each circular permutation is represented by more
than one permutation. For example, permutations (1, 2, 3), (2, 3, 1), and (3, 1, 2) represent the
same phenotype, i.e., circular permutation. In such problem, the genotype space is a set of
permutations and the phenotype space is a set of circular permutations. We can consider this
problem in view of genotype-phenotype mapping using the concept of quotient space.

Let Σn be a set of all permutations with length n. A function sk : Σn → Σn is defined by
k-step circular shift operation to right. For example, s2(1, 2, 3) = (2, 3, 1). A set of all shift
operations Sn = {sk : k = 0, 1, 2, . . . , n − 1} is a group. And it is easy to check that each sk is
an isometry on Σn. If Σn has a metric, Σn/S has an induced quotient metric by Proposition 2.

Now we consider various distances for permutation encoding. The most typical distance is
the Hamming distance H. Under the Hamming distance, it is known that cycle crossover is
geometric [19]. In this case, quotient metric is defined as follows:

d̄(x̄, ȳ) := min
s∈Sn

H(x, s(y)).

An example case is shown in Figure 6.
Then we can define induced quotient crossover.

Definition 10 (Position-independent cycle crossover). Normalize the second parent to the first
under the Hamming distance H. Then, do the cycle crossover using the first parent and the
normalized second parent.

Normalizing the second parent takes O(n) time because the equivalence class of the second
parent has exactly n elements by shift operations.

Cycle crossover is also geometric under the swap distance. The induced quotient crossover
can be defined in a similar way using the swap distance instead of the Hamming distance. Sum-
mary for the case of applying the cycle crossover is as follows:
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X = Σ6

x = (2, 4, 5, 1, 6, 3), y = (4, 6, 1, 5, 3, 2) ∈ X

S6 ȳ H(x, s(y))

s0 s0(y) = (4, 6, 1, 5, 3, 2) H(x, s0(y)) = 6
s1 s1(y) = (2, 4, 6, 1, 5, 3) H(x, s1(y)) = 2
s2 s2(y) = (3, 2, 4, 6, 1, 5) H(x, s2(y)) = 6
s3 s3(y) = (5, 3, 2, 4, 6, 1) H(x, s3(y)) = 5
s4 s4(y) = (1, 5, 3, 2, 4, 6) H(x, s4(y)) = 6
s5 s5(y) = (6, 1, 5, 3, 2, 4) H(x, s5(y)) = 5

y∗ = s1(y) = (2, 4, 6, 1, 5, 3)

d̄(x̄, ȳ) = 2

Figure 6: An Example of circular permutation under the Hamming distance

Example circular permutations

Genotype space X Σn

Isometry group G Sn: a set of all shift
inducing phenotype space X/G operations

Metric d on X Hamming distance H (or swap distance)

Original geometric crossover cycle crossover

Induced quotient crossover rearranging before cycle crossover
(newly proposed in this study)

On the other hand, we can use another well-known distance for Σn - reversal distance. Its
neighborhood structure is the one based on the 2-opt move. The reversal move selects any two
points along the permutation then reverses the subsequence between these points. This move
induces a graphic distance between circular permutations: the minimum number of reversals
to transform one circular permutation into the other. The geometric crossover associated with
this distance belongs to the family of sorting crossovers [19]: it picks offspring on the minimum
sorting trajectory between parent circular permutations sorted by reversals.

Definition 11 (Position-independent sorting-by-reversals crossover). Normalize the second par-
ent to the first under the graphic distance. Then, do the crossover based on sorting by reversals
for permutation using the first parent and the normalized second parent.
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Example circular permutations

Genotype space X Σn

Isometry group G Sn: a set of all shift
inducing phenotype space X/G operations

Metric d on X reversal distance

Original geometric crossover sorting-by-reversals crossover
for permutations [19]

Induced quotient crossover sorting-by-reversals crossover
for circular permutation [19]

There is a problem in implementing the geometric crossover under the reversal distance. Sort-
ing linear or circular permutations by reversals is NP-hard [1, 29]. So, the geometric crossover
under the reversal distance cannot be implemented efficiently. Nevertheless, this example of
quotient geometric crossover illustrates how to obtain a geometric crossover for a transformed
representation (circular permutation) starting from a geometric crossover for the original repre-
sentation (permutation). So in this case quotient geometric crossover is used as a tool to build a
new crossover for a derivative representation from a known geometric crossover for the original
representation. From [19], we know that the sorting-by-reversals crossover for permutations is
an excellent crossover for TSP. In future work we want to test the sorting-by-reversals crossover
for circular permutations. Since they are a direct representation, we expect it to perform even
better.

4.5 Sequences

An application in this subsection is not exactly fitted to a quotient framework by the isometry
subgroup like applications introduced earlier. However, we present this application because
it follows the quotient approach except that the equivalence relation is not from an isometry
subgroup.

We recast alignment before recombination in variable-length sequences as a consequence of
quotient geometric crossover. Consider the case that we use stretched sequences as genotypes
of sequences. Stretched sequences mean sequences created by interleaving ‘-’ anywhere and in
any number in the sequences. We can define a relation ∼ on stretched sequences: each stretched
sequence belongs to the class of its unstretched version. Then, we can easily check that the
relation ∼ is an equivalence relation.

In [23], Moraglio et al. have applied geometric crossover to variable-length sequences. The
distance for variable-length sequences they used there is the edit distance LD3: the minimum
number of insertion, deletion, and replacement of single character to transform one sequence into
the other. The geometric crossover associated with this distance is proposed in [23]. It is called
homologous geometric crossover: two sequences are aligned optimally before recombination.
Alignment here means allowing parent sequences to be stretched to match better with each
other. Two parent stretched sequences are aligned by interleaving or removing ‘-’ to create two
stretched sequences of the same length that have minimal Hamming distance. For example, if we
want to recombine agcacaca and acacacta, we need to align them optimally first: agcacac-a

3The notation LD comes from Levenshtein distance that is another name of edit distance.
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and a-cacacta. Notice that the Hamming distance between the aligned sequences is less than
the Hamming distance between the non-aligned sequences. After the optimal alignment, one
does the normal crossover and produce a new stretched sequence. The offspring is obtained by
removing ‘-’, so by unstretching the sequence.

From [23], we can easily check that edit distance for sequences is a metric and hence the
phenotype space - the space of variable-length sequences - is a quotient metric space. In fact, the
edit distance corresponds to a quotient metric and the homologous geometric crossover corre-
sponds to induced quotient crossover. Suppose that we deal with only genotypes, i.e., stretched
sequences. We leave offspring produced by homologous crossover just stretched - not removing
‘-’. Then the offspring exactly lies on quotient line segment. So the crossover is a quotient
geometric crossover in terms of stretched sequences. In sum, we have:

Example sequences

Genotype space X stretched sequences

Equivalence relation ∼ stretched sequences
inducing phenotype space X/∼ with the same unstretched sequence

Metric d on X edit distance

Original geometric crossover traditional crossover on stretched sequences

Induced quotient crossover homologous crossover [23]

Phenotypes are variable-length sequences that are directly representable. So in this case the
quotient geometric crossover is not used to search a non-directly representable space (pheno-
types) through an auxiliary directly representable space (genotypes). The benefit of applying the
quotient geometric crossover on variable-length sequences is that the homologous crossover over
sequences GXP is naturally understood as a transformation of the geometric crossover GXG over
stretched sequences G rather than a crossover acting directly on sequences P . This is because
the notion of optimal alignment is inherently defined on stretched sequences and not on simple
sequences. In [23], Moraglio et al. have tested the homologous crossover on the protein motif
discovery problem. In future work we want to study how the optimal alignment transformation
affects the fitness landscape associated with geometric crossover with and without alignment.

5 Concluding Remarks

In this paper we have mathematically analyzed genotype and phenotype spaces by introducing
the notion of quotient space. Phenotype space can be regarded as quotient space by a genotype-
phenotype mapping. Geometric crossovers has the advantage in that they can also be formally
defined once a distance is defined. Owing to this advantage we can connect a solution space - as a
metric space - and crossovers. Moreover, geometric crossover based on the appropriate distance
of a space reflects properties of given space. We introduced quotient metric on phenotype space.
Since the quotient metric is a part of the phenotype space structure, the geometric crossover by
the metric reflects the properties of phenotype space more effectively than the original geometric
crossover.

As shown in application examples, quotient geometric crossover is not only theoretically sig-
nificant but also has a practical effect of making search more effective by reducing the search
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space or removing the inherent bias. In the example of grouping, we newly reinterpreted geo-
metric crossover [17] that was previously proposed by the authors to be theoretically complete.
In the examples of graphs, symmetric functions, and circular permutations, we induced new
crossovers better tailored to phenotype space using the proposed methodology. In the example
of sequence, we successfully analyzed previous study [23] in view of our quotient theory though
it is slightly escaped from the framework we presented.

In future work, we will test the proposed induced quotient crossovers in solving the problems
using genetic algorithms. Also, more examples and applications for each example case are left
for future study.
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