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ABSTRACT
Geometric crossover is a representation-independent defini-
tion of crossover based on the distance of the search space
interpreted as a metric space. It generalizes the traditional
crossover for binary strings and other important recombi-
nation operators for the most frequently used representa-
tions. Using a distance tailored to the problem at hand, the
abstract definition of crossover can be used to design new
problem specific crossovers that embed problem knowledge
in the search. In previous work we have started studying
how metric transformations of the distance associated with
geometric crossover affect the original geometric crossover.
In particular, we focused on the product of metric spaces.
This metric transformation gives rise to the notion of prod-
uct geometric crossover that allows to build new geometric
crossovers combining pre-existing geometric crossovers in a
simple way. In this paper, we study another metric trans-
formation, the quotient metric space, that gives rise to the
notion of quotient geometric crossover. This turns out to be
a very versatile notion. We give many examples of applica-
tion of the quotient geometric crossover.

Keywords
Geometric crossover, metric transformation, quotient metric
space, quotient geometric crossover
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1. INTRODUCTION
Geometric crossover and geometric mutation are represen-

tation-independent search operators that generalize many
pre-existing search operators for the major representations
used in evolutionary algorithms, such as binary strings [7],
real vectors [7], permutations [6], syntactic trees [3] and se-
quences [1]. They are defined in geometric terms using the
notions of line segment and ball. These notions and the
corresponding genetic operators are well-defined once a no-
tion of distance in the search space is defined. Defining
search operators as functions of the search space is oppo-
site to the standard way [13] in which the search space is
seen as a function of the search operators employed. This
viewpoint greatly simplifies the relationship between search
operators and fitness landscape and has allowed us to give
simple rules-of-thumb to build crossover operators that are
likely to perform well.

Theoretical results of metric spaces can naturally lead to
interesting results for geometric crossover. In particular, in
previous work [5] we have shown that the notion of metric
transformation has great potential for geometric crossover.
A metric transformation is an operator that constructs new
metric spaces from pre-existing metric spaces: it takes one
or more metric spaces as input and outputs a new metric
space. The notion of metric transformation becomes ex-
tremely interesting when considered together with distances
firmly rooted in the syntactic structure of the underlying
solution representation (e.g., edit distance). In these cases
it gives rise to a simple and natural interpretation in terms
of syntactic transformations.

In previous work [5] we have extended the geometric frame-
work introducing the notion of product crossover associated
with the Cartesian product of metric spaces. This is a
very important tool that allows one to build new geomet-
ric crossovers customized to problems with mixed represen-
tations by combining pre-existing geometric crossovers in a
straightforward way. Using the product geometric crossover,
we have also shown that traditional crossovers for symbolic
vectors and blend crossovers for integer and real vectors are
geometric crossover.

In this paper we extend the geometric framework intro-
ducing the important notion of quotient geometric crossover.
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The metric transformation associated with it is the quo-
tient metric space. Quotient geometric crossover reduces
the search space actually searched by geometric crossover,
introduces problem knowledge in the search by using a dis-
tance better tailored to the specific solution interpretation
and it can be used to remove the inherent search bias of the
original crossover operator. The notion of quotient geomet-
ric crossover is extremely versatile, so we will illustrate its
many applications.

The paper is organized as follows. In Section 2, we present
the geometric framework including the notion of geometricity-
preserving transformation. In Section 3, we introduce the
notion of quotient geometric crossover. In Section 4, we
study several useful applications related with quotient ge-
ometric crossover. In Section 4.1 and 4.2, we show how
previous work on a grouping problem [2] and graphs can
be recast and understood more simply in terms of quotient
geometric crossover. Here, quotient geometric crossover is
used to filter out inherent redundancy in the solution rep-
resentation. In Section 4.3, we apply the quotient geomet-
ric crossover in a completely different way: we show how
homologous crossover for variable-length sequences [1] can
be understood as a quotient geometric crossover. In Sec-
tion 4.4, we present a thorough study of the application of
quotient geometric crossover to glued real-valued represen-
tations that remove the inherent bias of geometric crossover
based on simple real-valued representations. In Section 4.5,
we consider functional representation and shows how the
concept of quotient geometric crossover is connected to the
search of the functions. Genetic programming is shown as
an example. In Section 4.6, we explain that quotient geo-
metric crossover can be used to understand how crossover
and neutral code interact. In Section 5, we give conclusions.

2. GEOMETRIC FRAMEWORK

2.1 Geometric Preliminaries
In the following we give necessary preliminary geometric

definitions and extend those introduced in [7, 3]. The fol-
lowing definitions are taken from [10].

The terms distance and metric denote any real valued
function that conforms to the axioms of identity, symmetry
and triangular inequality. In a metric space (S, d) a line
segment (or closed interval) is the set of the form [x; y]d =
{z ∈ S | d(x, z) + d(z, y) = d(x, y)} where x, y ∈ S are
called extremes of the segment. Metric segment general-
izes the familiar notions of segment in the Euclidean space
to any metric space through distance redefinition. Notice
that a metric segment does not coincide to a shortest path
connecting its extremes (geodesic) as in an Euclidean space.
In general, there may be more than one geodesic connect-
ing two extremes; the metric segment is the union of all
geodesics.

We assign a structure to the solution set S by endowing it
with a notion of distance d. M = (S, d) is therefore a solu-
tion space and (M, f) is the corresponding fitness landscape,
where f is the fitness function over S.

2.2 Definition of Geometric Crossover
The following definitions are representation-independent

therefore applicable to any representation.

Definition 1 (Image set). The image set Im[OP ] of

a genetic operator OP is the set of all possible offspring
produced by OP .

Definition 2 (Geometric crossover). A binary op-
erator GX is a geometric crossover under the metric d if all
offspring are in the segment between its parents x and y, i.e.,

Im[GX(x, y)] ⊆ [x; y]d.

A number of general properties for geometric crossover
and geometric mutation have been derived in [7] where we
also showed that traditional crossover is geometric under
Hamming distance.

2.3 Formal Evolutionary Algorithm
and Problem Knowledge

Geometric operators are defined as functions of the dis-
tance associated to the search space. However, the search
space does not come with the problem itself. The problem
consists only of a fitness function to optimize, that defines
what a solution is and how to evaluate it, but it does not
give any structure on the solution set. The act of putting a
structure over the solution set is part of the search algorithm
design and it is a designer’s choice.

A fitness landscape is the fitness function plus a struc-
ture over the solution space. So, for each problem, there is
one fitness function but as many fitness landscapes as the
number of possible different structures over the solution set.
In principle, the designer could choose the structure to as-
sign to the solution set completely independently from the
problem at hand. However, because the search operators are
defined over such a structure, doing so would make them de-
coupled from the problem at hand, hence turning the search
into something very close to random search.

In order to avoid this one can exploit problem knowledge
in the search. This can be achieved by carefully designing
the connectivity structure of the fitness landscape. For ex-
ample, one can study the objective function of the problem
and select a neighborhood structure that couples the dis-
tance between solutions and their fitness values. Once this
is done problem knowledge can be exploited by search op-
erators to perform better than random search, even if the
search operators are problem-independent (as is the case
of geometric crossover and geometric mutation). Indeed,
the fitness landscape is a knowledge interface between the
problem at hand and a formal, problem-independent search
algorithm.

Under which conditions is a landscape well-searchable by
geometric operators? As a rule of thumb, geometric muta-
tion and geometric crossover work well on landscapes where
the closer pairs of solutions, the more correlated their fit-
ness values. Of course this is no surprise: the importance
of landscape smoothness has been advocated in many differ-
ent context and has been confirmed in uncountable empirical
studies with many neighborhood search meta-heuristics [19].
We operate according to the following rule-of-thumbs:
Rule-of-thumb 1 : if we have a good distance for the problem
at hand then we have good geometric mutation and good
geometric crossover.
Rule-of-thumb 2 : a good distance for the problem at hand
is a distance that makes the landscape “smooth.”

2.4 Geometricity-Preserving Transformations
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Figure 1: Commutative diagram linking metric and
crossover transformations.

In previous work we have proven that a number of impor-
tant pre-existing recombination operators for the most fre-
quently used representations are geometric crossovers. We
have also applied the abstract definition of geometric crossover
to distances firmly rooted in a specific solution representa-
tion and designed brand-new crossovers. An appealing way
to build new geometric crossovers is starting from recom-
bination operators that are known to be geometric and de-
riving new geometric crossovers by geometricity-preserving
transformations/combinations that when applied to geomet-
ric crossovers, return geometric crossovers.

The definition of geometric crossover is based on the no-
tion of metric. Therefore, a natural starting point to seek
geometricity-preserving transformations is to consider trans-
formations of the underlying metrics that are known to re-
turn metric spaces and study how the geometric crossover
associated to the transformed metric space relates with the
geometric crossover associated with the original metric space.

There are a number of metric space transformations [10,
20] that are potentially of interest for geometric crossover:
sub-metric space, product space, quotient metric space, glu-
ing metric space, combinatorial transformation, non-negative
combinations of metric spaces, Hausdorff transformation,
concave transformation, and biotope transformation.

Let us consider the geometric crossover X associated to
the original metric space M , and the geometric crossover X ′

associated to the transformed metric space M ′ = mt(M)
where mt is the metric transformation. The functional re-
lationship among metric spaces and geometric crossovers
can be nicely expressed through a commutative diagram
(Figure 1). gx means application of the formal definition
of geometric crossover and gt means induced geometricity-
preserving crossover transformation associated to the metric
transformation mt. This diagram becomes remarkably in-
teresting when the metric transformation mt is associated
to an induced geometricity-preserving crossover transforma-
tion gt that has a simple interpretation in terms of syntactic
manipulation. This indeed allows one to get new geomet-
ric crossovers starting from recombination operators that
are known to be geometric by simple geometricity-preserving
syntax manipulation.

We study those metric-preserving transformations which
induced geometricity-preserving transformations have a sim-
ple and natural interpretation on the solution representa-
tion.

3. QUOTIENT GEOMETRIC CROSSOVER

3.1 Quotient Metric Space
Let (S, d) be a metric space and ∼ be an equivalence re-

lation on S. Consider the quotient space S/ ∼. Now we will

give a metric on S/ ∼ induced by the original metric d on
S.

Definition 3 (Induced distance measure).
For x̄, ȳ ∈ S/ ∼,

d∼(x̄, ȳ) := inf
x∈x̄,y∈ȳ

d(x, y).

Then, the following theorem holds [8].

Theorem 1. If the equivalence relation arises from an
isometry subgroup1, d∼ is a metric on S/ ∼.

This metric space (S/ ∼, d∼) is called quotient metric space.
Later we will directly prove that d∼ becomes a metric in-
stead of showing that its related equivalence relation∼ comes
from an isometry subgroup.

In a metric space (S, d) a quotient line segment is the
set of the form [x; y]d∼ = {z ∈ S | d∼(x̄, z̄) + d∼(z̄, ȳ) =
d∼(x̄, ȳ), z̄ ∈ S/ ∼} where x̄, ȳ ∈ S/ ∼. Now we can define
quotient geometric crossover.

Definition 4 (Quotient geometric crossover).
A binary operator GXq is a quotient geometric crossover
under the metric d and the equivalence relation ∼ if all off-
spring are in the quotient line segment between its parents x
and y, i.e., GXq(x, y) ⊆ [x; y]d∼ .

3.2 Genotype-Phenotype Mapping
The notion of quotient geometric crossover is important

because it lies at the heart of the relation between geometric
crossover and genotype-phenotype mapping as we illustrate
in the following.

Genotype means solution representation: some structure
that can be stored in a computer and manipulated. Pheno-
type means solution itself without any reference to how it is
represented. Sometimes it is possible to have a one-to-one
mapping between genotypes and phenotypes, so the distinc-
tion between genotype and phenotype becomes purely for-
mal. However in many interesting cases phenotypes cannot
be represented uniquely by genotypes. So the same phe-
notype is represented by more than one genotypes. In this
case we say that we have a redundant representation. For
example, to represent a graph we need to label its nodes and
then we can represent it using its adjacency matrix. This
representation is redundant: the same graph can be repre-
sented with more than one adjacency matrix by relabeling
its nodes.

There are quite a few problems in that it is hard to rep-
resent one phenotype by just one genotype using traditional
representations. Roughly speaking, redundant representa-
tion leads to severe loss of search power in genetic algo-
rithms, in particular, with respect to traditional crossovers
[9]. To alleviate the problems caused by redundant repre-
sentation, a number of methods such as adaptive crossover
have been proposed [11, 16, 17, 21]. Among them, a tech-
nique called normalization2 is representative. It transforms
the genotype of a parent to another genotype to be consis-
tent with the other parent so that the genotype contexts of
the parents are as similar as possible in crossover. There
have been a number of successful studies using normaliza-
tion. An extensive survey about normalization is appeared
in [9].
1
For details, see [8].

2
The term of normalization is firstly appeared in [14]. However, it

is based on the adaptive crossovers proposed in [16, 17].



Although many of studies about normalization did not use
the concept of distance, once a distance dG on the genotypes
G is defined, we can formally redefine the normalization p′2
of the second parent p2 to the first p1 as follows:

p′2 := argmin
s∈w(p2)

dG(p1, s),

where w(s) is the set of all the genotypes with the same
phenotype as the genotype s. The use of distance to de-
fine normalization is important because it generalizes and
makes rigorous the notion of normalization for any solution
representation.

Now we formally present the general relation between ge-
ometric crossover and genotype-phenotype mapping. The
concept of normalization defined by distance is closely re-
lated with the quotient geometric crossover. Let us consider
genotype-phenotype mappings g : G → P that are not in-
jective (redundant representation). The mapping g induces
a natural equivalence relation ∼ on the set of genotypes:
genotypes with the same phenotype belong to the same class.
Given a distance dG on genotypes G, the quotient with the
relation ∼ produces a distance dP on the phenotypes P :
P = G/ ∼ and dP (x̄, ȳ) = infx∈x̄,y∈ȳ dG(x, y).

By applying the formal definition of geometric crossover
to the metric spaces (G, dG) and (P, dP ), we obtain the ge-
ometric crossovers XG and XP , respectively. XG searches
the space of genotypes and XP searches the space of phe-
notypes. Searching the space of phenotypes has a number
of advantages: (i) it is smaller than the space of genotypes,
hence quicker to search (ii) the phenotypic distance is better
tailored to the underlying problem, hence the corresponding
geometric crossover works better (iii) the space of pheno-
types has different geometric characteristics from the geno-
typic space. This can be used to remove unwanted bias from
geometric crossover.

However, the crossover XP cannot be directly used itself
because it recombines phenotypes that are objects that can-
not be directly represented. The quotient geometric crossover
allows us to search the space of phenotypes with the crossover
XP indirectly by manipulating the genotypes G. This is
possible because for the commutative diagram there exists
an induced geometricity-preserving transformation gt of the
genotypic crossover XG that allows us to use the genotypic
representation to implement a geometric crossover in the
space of phenotypes gt(XG) without making explicit use of
phenotypes. The type of the transformation gt depends on
the type of the equivalence relation ∼ used in the quotient
of the underlying metric space that in turns depends on the
underlying syntax of the solution representation. It may
happen that the induced geometricity-preserving transfor-
mation may be difficult to implement and/or computation-
ally intractable. In these cases, it may not be feasible using
an exact equivalent of the phenotypic geometric crossover,
but an approximation may be preferable and still retaining
most of the advantages of the exact equivalent.

In the following section we consider a number of equiva-
lence classes for the quotient operation and its related in-
duced genotypic crossover transformation.

4. APPLICATIONS

4.1 Groupings
Now we introduce an example class of problems using the

normalization method. The problem that we consider is the
grouping problem [12]. Grouping problems are commonly
concerned with partitioning given item set into mutually
disjoint subsets. Examples belonging to this class of prob-
lems are multiway graph partitioning, graph coloring, bin
packing, and so on. Grouping representation is also used to
solve the joint replenishment problem, which is a well-known
problem appeared in the field of industrial engineering [18].
In this class of problems, the normalization decreased the
problem difficulty and led to notable improvement in per-
formance.

Most normalization studies for grouping problems were
focused on the k-way partitioning problem. In the problem,
the k-ary representation, in which k subsets are represented
by the integers from 0 to k− 1, has been generally used. In
this case, a phenotype (a k-way partition) is represented
by k! different genotypes. In the problem, a normaliza-
tion method was used in [14]. Other studies for the k-way
partitioning problem used the same technique [9, 15]. In
sense that normalization pursues the minimization of geno-
type inconsistency among chromosomes, in previous work
[4], we proposed an optimal, efficient normalization method
for grouping problems and a distance measure, the labeling-
independent distance, that eliminates this dependency com-
pletely.

Given two k-ary encodings a, b ∈ U = {1, 2, . . . , k}n (fixed-
length vectors on a k-ary alphabet) and the Hamming dis-
tance H in U , we define the labeling-independent distance
LI associated to H as follows:

LI(a, b) := min
σ,σ′∈Σk

H(aσ, bσ′)

where Σk is the set of all permutations of length k and aσ is
a permuted encoding of a by a permutation σ, i.e., the ith

element ai of a is transformed into σ(ai). Then, labeling-
independent distance LI is a pseudo-metric3 on U (see [4]).

Given an element a ∈ U , since H is a metric, there are k!
elements such that the labeling-independent distance LI to a
is zero. If the labeling-independent distance LI between two
elements is equal to zero, we define them to be in relation
∼. Then, the relation ∼ is an equivalence relation (see [4]).
(U/ ∼, LI4) is a metric space, i.e., the labeling-independent
distance LI is a metric on U/ ∼ (see [4]).

We can design a quotient geometric crossover based on
the labeling-independent metric.

Definition 5 (Labeling-independent crossover).
Normalize the second parent to the first under the Hamming
distance H. Do the normal crossover using the first parent
and the normalized second parent.

Theorem 2. The labeling-independent crossover is geo-
metric under the metric LI [2].

• Genotypes G: labeled partitions represented as vectors of sym-

bols

3
Formally, the term distance or metric denotes any real valued func-

tion that conforms to the axioms of identity, symmetry and triangular
inequality. A distance for which the axiom of identity is relaxed so
that distance zero does not necessarily implies equality (but equality
still implies distance zero) is called pseudo-metric.
4
Strictly speaking, this labeling-independent distance is not exactly

the same as LI on U because it is a metric on U/ ∼. However, the
definition of LI on U/ ∼ can be naturally induced from LI on U , i.e.,
LI(ā, b̄) := minσ,σ′∈Σk

H(aσ, bσ′ ).



• Phenotypes P : unlabeled partitions

• Equivalence relation ∼: labeled partitions with the same par-

tition structure

• Distance on genotypes dG: Hamming distance

• Distance on phenotypes dP : labeling-independent distance

• Crossover on genotypes XG: traditional crossover for vectors

• Crossover of phenotypes XP : label normalization before tradi-

tional crossover

• Induced crossover transformation gt: label normalization

The benefit of understanding normalization for grouping
problems in terms of quotient geometric crossover is the
possibility of understanding the benefit of normalization in
terms of landscape analysis. We have done this in previous
work [2].

4.2 Graphs
In this subsection, we consider any problem naturally de-

fined over a graph in which the fitness of the solution does
not depend on the labels on the nodes but only on the struc-
tural relationship, i.e., edge between nodes.

Formally, let A ∈ Mn be the adjacency matrix of a labeled
graph using labels of n nodes and let P be an n × n per-
mutation matrix5. Then the matrix PA means the labeled
graph obtained by relabeling A according to the permuta-
tion represented by P . The fitness f : Mn → R satisfies
that for every A ∈ Mn and every permutation matrix P ,
f(A) = f(PA).

Let (Mn, H) be a metric space on the labeled graphs un-
der the Hamming distance H. Notice that this metric is
labeling-dependent. In particular, H(A, PA) may not be
zero although A and PA represent the same structure. If A
is equal to PA′ for some permutation matrix P , we define A
and A′ to be in relation ∼, i.e., A ∼ A′. Then, the relation
∼ is an equivalence relation.6

An unlabeled graph g is the equivalence class of all its la-
beled graphs, i.e., g(A) = {PA | P is a permutation matrix}.
unlabeled-graph space Mn/ ∼ is the set of all equivalence
classes partitioning the set Mn.

We define induced distance measure LI on Mn/ ∼ as fol-
lows: for each g, g′ ∈ Mn/ ∼,

LI(g, g
′) := min

A∈g,A′∈g′
H(A, A′).

Then, (Mn/ ∼, LI) is a metric space, i.e., LI is a metric on
Mn/ ∼.7 It shows that the metric space (Mn, H) induces a
quotient metric space (Mn/ ∼, LI).

Definition 6 (Labeling-independent crossover).
Do the graph matching of the second parent p2 to the first
p1 under the Hamming distance H, i.e.,

p′2 := argmin
A∈g(p2)

H(p1, A).

Do the normal crossover using the first parent p1 and the
graph-matched second parent p′2.

The following theorem shows that the labeled-graph geo-
metric crossover for (Mn, H) induces the unlabeled-graph
geometric crossover for (Mn/ ∼, LI).

5
Permutation matrix is a (0, 1)-matrix with exactly one 1 in every

row and column.
6
The proof is not trivial but omitted by space limit.

7
The proof is not trivial but omitted by space limit.

Theorem 3. The labeling-independent crossover is geo-
metric under the metric LI.

Proof. Omitted by space limit.

The labeling-independent crossover is defined over unla-
beled graphs Mn/ ∼. This space is much smaller than la-
beled graphs Mn. More precisely, |Mn/ ∼ | = |Mn|/n!.
This means that the more the labels are, the smaller the
unlabeled-graph space is compared with the labeled-graph
space. Smaller space means better performance given the
same amount of evaluations.

The previous theorem tells how to guide the implementa-
tion using graph matching for specific geometric crossovers.
To implement the geometric crossover over unlabeled graphs,
we need to use labeled graphs. The labeling results are nec-
essary to represent and handle the solution, even if in fact
it is only an auxiliary function and can be considered not
being part of the problem to solve. Graph matching before
crossover allows to implement the geometric crossover on
the unlabeled-graph space using the corresponding geomet-
ric crossover over the auxiliary space of the labeled graph
after graph matching.
• Genotypes G: labeled graphs with the same number of nodes

represented as adjacency matrices of the same size

• Phenotypes P : unlabeled graphs

• Equivalence relation ∼: adjacency matrices with the same un-

derlying unlabeled graph

• Distance on genotypes dG: Hamming distance between adja-

cency matrices

• Distance on phenotypes dP : labeling-independent distance be-

tween unlabeled graphs. This equals the edge edit distance.

• Crossover on genotypes XG: traditional crossover on adjacency

matrices seen as vectors

• Crossover of phenotypes XP : graph matching before traditional

crossover on adjacency matrices

• Induced crossover transformation gt: graph matching

The benefit of applying the quotient geometric crossover
on graphs is the design of a crossover better tailored to
graphs. The notion of graph matching before crossover
arises directly from the definition of quotient geometric crossover.
Graphs are very important because they are ubiquitous. In
future work we will test this crossover on some applications.
Graphs and groupings can be seen as particular cases of la-
beled structures in which the fitness of a solution depends
only on the structure and not on the specific labeling. In
future work we will study the class of labeled structures in
combination with quotient geometric crossover.

4.3 Sequences
In this subsection we recast alignment before recombina-

tion in variable-length sequences as a consequence of quo-
tient geometric crossover. In previous work [1] we have ap-
plied geometric crossover to variable-length sequences. The
distance for variable-length sequences we used there is the
edit distance LD8: the minimum number of insertion, dele-
tion and replacement of single character to transform one
sequence into the other. The geometric crossover associated
with this distance is the homologous geometric crossover:
two sequences are aligned optimally before recombination.
Alignment here means allowing parent sequences to be stretched

8
The notation LD comes from Levenshtein distance that is another

name of edit distance.



to match better with each other. Formally stretching se-
quences means interleaving ‘-’ anywhere and in any number
in the sequences to create two stretched sequences of the
same length that have minimal Hamming distance. For ex-
ample, if we want to recombine agcacaca and acacacta, we
need to align them optimally first: agcacac-a and a-cacacta.
Notice that the Hamming distance between the aligned se-
quences is less than the Hamming distance between the non-
aligned sequences.

After the optimal alignment, one does the normal crossover
and produce a new stretched sequence. The offspring is
obtained by removing ‘-’, so by unstretching the sequence.
How does quotient geometric crossover fit in here? We can
define a relation ∼ on stretched sequences: each stretched se-
quence belongs to the class of its unstretched version. Then,
we can easily check that the relation ∼ is an equivalence
relation. Let 〈s〉 be the set of all stretched sequences of se-
quence s. We define the induced distance measure d∼. Let
s1, s2 be variable-length sequences. If H is the Hamming
distance for stretched sequences,

d∼(s1, s2) := min
s′1∈〈s1〉,s′2∈〈s2〉

H(s′1, s
′
2).

Then, by the definition of edit distance, d∼ is equal to LD.
Hence d∼ is a metric on variable-length sequences.

Theorem 4. Homologous crossover is geometric under
the edit distance [1].

• Genotypes G: variable-length stretched sequences

• Phenotypes P : variable-length (unstretched) sequences

• Equivalence relation ∼: stretched sequences with the same un-

stretched sequence

• Distance on genotypes dG: If the two stretched sequences have

different length, add as many ‘-’ as necessary at the right end of

the shorter sequence to make it become equal in length to the

longer sequence. Their genotypic distance is then their Hamming

distance.

• Distance on phenotypes dP : edit distance between sequences

• Crossover on genotypes XG: traditional crossover on stretched

sequences. If the two stretched sequences have different length,

add as many ‘-’ as necessary at the right end of the shorter se-

quence to make it become equal in length to the longer sequence.

• Crossover of phenotypes XP : homologous crossover for se-

quences

• Induced crossover transformation gt: optimal alignment

Phenotypes are variable-length sequences that are directly
representable. So in this case the quotient geometric crossover
is not used to search a non-directly representable space (phe-
notypes) through an auxiliary directly representable space
(genotypes). The benefit of applying the quotient geometric
crossover on variable-length sequences is that the homolo-
gous crossover over sequences XP is naturally understood
as a transformation gt of the geometric crossover XG over
stretched sequences G rather than a crossover acting directly
on sequences P . This is because the notion of optimal align-
ment is inherently defined on stretched sequences and not on
simple sequences. In previous work [1] we have tested the ho-
mologous crossover on the protein motif discovery problem.
In future work we want to study how the optimal alignment
transformation affects the fitness landscape associated with
geometric crossover with and without alignment.

4.4 Glued Space

( l  , l  )1 ( u  , l  )1

( u  , u  )1( l  , u  )1

2 2

22

Figure 2: Glued space on R2. This can be considered
as a quotient space.

x

Figure 3: Equivalent class on R2. The shadowed
rectangle represents given bounded real space X.
Each rectangle has the same size as X.

In this subsection we show how to use quotient geometric
crossover in connection with glued spaces for real domain.

In general, solution space of real problems has the range.
Let the solution space X be {x ∈ Rn | li ≤ xi < ui for each i}
where l = (l1, l2, . . . , ln) is a lower bound and u = (u1, u2, . . . , un)
is an upper bound. If we apply geometric crossover on this
bounded domain with Euclidean distance, offspring have
bias toward the center of the space. One method to elimi-
nate this bias is gluing the boundaries by identifying ui to
li for each i. Figure 2 shows this glued space for R2 case.

The interesting fact is that this glued space can be con-
sidered as a quotient space. For the definition of quotient
space which gives an effect equivalent to gluing, equivalence
relation on Rn is defined as follows:

Definition 7. x ∼ y if and only if for each i = 1, 2, . . . , n,
there exists ai ∈ Z such that xi − yi = ai(ui − li).

It can be easily checked that ∼ is an equivalence relation.
Let 〈x〉 be the equivalence class of x ∈ Rn. In Figure 3,
points indicated by bullets are in the same equivalent class
in R2.

X can be considered as a quotient set Rn/ ∼ by consider-
ing x ∈ X as x̄ ∈ Rn/ ∼. However, this gives another topol-
ogy to the same set. We need to define a distance tailored
to this new topology. We define a new distance induced by
Euclidean distance ED. Let x, y ∈ X.

d∼(x, y) := min
x′∈〈x〉,y′∈〈y〉

ED(x′, y′).

Theorem 5. d∼ is a metric in X.

Proof. Omitted by space limit.

The definition of d∼ is clear, but it is impossible to cal-
culate distances considering all points in equivalence class
since the number of the points is infinite. Fortunately, there
is a practical way to calculate it.
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Figure 4: Line segments on Euclidean space and
quotient space

Let x, y ∈ X. For each i, let Ti(y) = {yi, yi +(ui− li), yi−
(ui − li)} and Mi(y) = argmin

m∈Ti(y)

{|xi −m|}. Mi(y) is the set

because the number of maximizers can be more than one.
Let M(y) = {(y′1, y′2, . . . , y′n) ∈ Zn | y′i ∈ Mi(y) for each i}.

Theorem 6. Let x, y ∈ X. If ED is Euclidean distance
and y∗ ∈ M(y), d∼(x, y) = ED(x, y∗).

Proof. Omitted by space limit.

According to Theorem 6, to calculate d∼(x, y), we need
only to find y∗ by choosing minimizer among three elements
from Ti(y) for each coordinate and get Euclidean distance
between x and y∗. Now, the segment between x and y on
quotient space is induced by the segment between x and y∗

on Rn.

Theorem 7. If ED is Euclidean distance, the line seg-
ment [x; y]d∼ is the set

[

y′∈M(y)

{z ∈ X | z ∼ z′ for some z′ ∈ [x; y∗]ED}.

Proof. Omitted by space limit.

In Figure 4, (a) shows the segment on Euclidean space
and (b) shows the segment on quotient space. In quotient
space, segments may cross the boundaries.
• Genotypes G: bounded continuous space

• Phenotypes P : glued continuous space

• Equivalence relation ∼: points between which, for each coordi-

nate, the difference is a multiple of the range size

• Distance on genotypes dG: Euclidean distance

• Distance on phenotypes dP : glued distance (Pacman-world dis-

tance)

• Crossover on genotypes XG: segment crossover (in the Eu-

clidean space geometric crossover becomes the line recombina-

tion.)

• Crossover of phenotypes XP : segment crossover in Pacman-

world spaces (the 2D Euclidean space becomes the surface of a

torus. Geometric crossover is defined on segments in this space.)

• Induced crossover transformation gt: points that were distant

and close to opposite boundaries become close.

The original crossover XG on genotypes is biased toward
the center of the space. The benefit of quotient geometric
crossover in this case is to transform the topology of the
space and search the space of phenotypes that is isotropic
(every point is the center, or there is no center) whose as-
sociated geometric crossover XP has no such a bias. An
unbiased space gives the same a priori opportunity to each
point of the space to be searched without giving arbitrary
preference to points close to the center. The search is there-
fore guided by the fitness values encountered only. In future
work we will extend these results to more general spaces and
test the unbiased crossovers on standard benchmark prob-
lems for continuous optimization.

4.5 Functions
Here we consider functional representations: any repre-

sentation that encodes a function. Examples of this type
of representation are genetic programming trees, finite state
automata, neural networks, and so on. Among them, we
will see an example for genetic programming (GP). We can
define an equivalence relation: all symbolic expressions that
represent the same function. We can also define a less strong
equivalence relation: consider as equivalent those syntactic
trees that differ in the order of the operands in nodes with
commutative operations. For example, the multiplication
operation ‘∗’ is commutative and two different trees repre-
sent the same function. The quotient geometric crossover
corresponds to homologous crossover for GP trees with re-
ordering of commutative subtrees to have minimum struc-
tural Hamming distance. This quotient geometric crossover
is based on the less strong equivalence relation. So it is not
fully semantical. However this quotient geometric crossover
cannot be implemented efficiently because the complexity to
compute the structural Hamming distance between rooted
unordered trees grows exponentially with the number of
nodes in the trees.
• Genotypes G: parse trees that is a compact (shorter than ex-

tensive form), redundant (the same function can be represented

by more than one parse tree) and biased (some functions have

more associated parse trees than other functions) representation

of functions.

• Phenotypes P : computed functions. A generic function can be

directly represented in an extensive form as a vector in which for

every combinations of the input values there is a cell that con-

tains the output of the function for those values. We call this

vector the output vector representation of the function. Clearly

this direct representation in practice is not used because it is too

long.

• Equivalence relation ∼: parse trees that correspond to the same

function or equivalently with the same output vector.

• Distance on genotypes dG: structural Hamming distance be-

tween parse trees

• Distance on phenotypes dP : (weighted) Hamming distance on

output vectors

• Crossover on genotypes XG: homologous crossover for parse

trees

• Crossover of phenotypes XP : traditional crossover on the out-

put vectors of the functions

• Induced crossover transformation gt: expand/reduce/change

syntactic trees before crossover without changing the underlying

computed functions such as they have minimal structural Ham-

ming distance

The benefit of applying quotient geometric crossover to
parse trees is to search the space of the functions represented
by the parse trees rather than the space of parse trees. This
is done indirectly by manipulating parse trees. Even if in
principle a function can be represented directly using its out-
put vector representation, so making not strictly necessary
to recur to an auxiliary genotypic representation and to the
quotient geometric crossover to search this space, such direct
representation is simply too long for any practical purpose,
and a concise genotypic representation is needed.

The implementation of the phenotypic geometric crossover
using the transformation gt on the genotypic crossover XG

presents a problem: it is simply not possible to compute effi-
ciently the transformation gt because one needs to compute
the smallest structural Hamming distance between all pos-



sible transformations of the syntactic trees that keep their
underlying functions invariant. We could relax the prob-
lem and consider a weaker equivalence relation in which two
parse trees are equivalent if exchanging subtrees of nodes
with commutative operations (syntactic transformation that
keeps the computed function invariant) they become equal.
In this case dP becomes the distance between rooted (par-
tially) unordered trees. The computational cost of this dis-
tance grows exponentially with the number of commutative
nodes in the syntactic trees. This could be still hard to com-
pute and so the associated geometric crossover XP . How-
ever there are quick approximated algorithms to compute
this distance. In future work we will try this crossover.

We can apply the concept of quotient geometric crossover
to other examples with functional representations such as
finite state machines and neural networks in similar way.

4.6 Neutrality
The role of neutrality is little understood. Notice that

neutrality is a synonym of redundancy. As a rule of thumb
one would like to filter out redundancy as in normaliza-
tion for structural problem to improve performance. How-
ever neutrality may have some beneficial aspect on variable-
length representation. In fact it can be used to have a self-
adaptive mutation rate at a phenotypic level: imaging you
have a constant number of mutations at a genotype level. If
the informative part, the one used to get the phenotype, is
small as compared with the non-informative one, mutation
at genotype level have a small chance to affect the phe-
notype. So the same mutation rate at genotype level can
correspond to a smaller or equivalent mutation at a pheno-
type level depending on the amount of neutral code in the
genotype. Since the mutation itself inserts or deletes neutral
code, this combined with selection develops a self-adaptive
mechanism that selects genotypes with the right amount of
neutral code to be more evolvable. Neutrality is wide-spread
in nature, so studying neutrality is important. Quotient ge-
ometric crossover can be used to understand how crossover
and neutrality interact. In fact the induced geometricity-
preserving transformation tells what trick to use to remove
redundancy for crossover but still keep it there for mutation
to obtain the self-adaptive mutation rate trick, so to take
advantage of both genotypic and phenotypic spaces.
• Genotypes G: sequence with neutral code (part of the sequence

that if removed would not affect the phenotype)

• Phenotypes P : sequence without neutral code. There is a one-

to-one mapping between these sequences and the phenotypes. So

this is a direct representation of the phenotypes, rather than the

phenotype itself.

• Equivalence relation ∼: two sequences with neutral code are

equivalent if when the neutral code is removed they become the

same phenotypic sequence

• Distance on genotypes dG: edit distance on sequences with neu-

tral code

• Distance on phenotypes dP : edit distance on sequences without

neutral code

• Crossover on genotypes XG: homologous crossover for sequences

• Crossover of phenotypes XP : homologous crossover for se-

quences

• Induced crossover transformation gt: identity transformation

The benefit of the quotient geometric crossover is to show
how crossover and neutral code interact. We have seen
that neutrality may be beneficial in terms of adaptive muta-

tion rate. Since the induced crossover transformation is the
identity transformation, this means that the same crossover
that searches the genotypes space can be understood as a
crossover searching the phenotype space indirectly using the
genotypes. In other words, the neutral code is completely
transparent to the search done by crossover and it does not
affect its search or performance. So, neutral code retains
the advantage of an adaptive mutation rate together with
being transparent to the action of crossover.

5. CONCLUDING REMARKS
In this paper we have extended the geometric framework

introducing the notion of quotient geometric crossover. This
could be clearly understood using the concept of geometricity-
preserving transformation. Quotient geometric crossover is
a very general and versatile tool. We have given a num-
ber of interesting examples as its applications. As shown in
applications, quotient geometric crossover is not only theo-
retically significant but also has a practical effect of making
search more effective by reducing the search space or remov-
ing the inherent bias. More theoretical analysis and more
detailed applications for each case are left for future study.
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