15 research outputs found

    Measuring the growth of structure by matching dark matter haloes to galaxies with VIPERS and SDSS

    Get PDF
    We test the history of structure formation from redshift 1 to today by matching galaxies from the VIMOS Public Extragalactic Redshift Survey (VIPERS) and Sloan Digital Sky Survey (SDSS) with dark matter haloes in the MultiDark, Small MultiDark Planck (SMDPL), N-body simulation. We first show that the standard subhalo abundance matching (SHAM) recipe implemented with MultiDark fits the clustering of galaxies well both at redshift 0 for SDSS and at redshift 1 for VIPERS. This is an important validation of the SHAM model at high redshift. We then remap the simulation time steps to test alternative growth histories and infer the growth index gamma = 0.6 +/- 0.3. This analysis demonstrates the power of using N-body simulations to forward model galaxy surveys for cosmological inference. The data products and code necessary to reproduce the results of this analysis are available online (https://github.com/darklight- cosmology/vipers-sham)

    The ALHAMBRA survey: evolution of galaxy clustering since z ~ 1

    Get PDF
    We study the clustering of galaxies as function of luminosity and redshift in the range 0.35 < z < 1.25 using data from the Advanced Large Homogeneous Area Medium-Band Redshift Astronomical (ALHAMBRA) survey. The ALHAMBRA data used in this work cover 2.38 deg2 in seven independent fields, after applying a detailed angular selection mask, with accurate photometric redshifts, σz ≲ 0.014(1 + z), down to IAB < 24. Given the depth of the survey, we select samples in B-band luminosity down to Lth ≃ 0.16L* at z = 0.9. We measure the real-space clustering using the projected correlation function, accounting for photometric redshifts uncertainties. We infer the galaxy bias, and study its evolution with luminosity. We study the effect of sample variance, and confirm earlier results that the Cosmic Evolution Survey (COSMOS) and European Large Area ISO Survey North 1 (ELAIS-N1) fields are dominated by the presence of large structures. For the intermediate and bright samples, Lmed ≳ 0.6L*, we obtain a strong dependence of bias on luminosity, in agreement with previous results at similar redshift. We are able to extend this study to fainter luminosities, where we obtain an almost flat relation, similar to that observed at low redshift. Regarding the evolution of bias with redshift, our results suggest that the different galaxy populations studied reside in haloes covering a range in mass between log10[Mh/( h−1 M⊙)] ≳ 11.5 for samples with Lmed ≃ 0.3L* and log10[Mh/( h−1 M⊙)] ≳ 13.0 for samples with Lmed ≃ 2L*, with typical occupation numbers in the range of ∼1–3 galaxies per halo

    Assessing the photometric redshift precision of the S-PLUS survey: The Stripe-82 as a test-case

    Get PDF
    Indexación ScopusIn this paper we present a thorough discussion about the photometric redshift (photo-z) performance of the Southern Photometric Local Universe Survey (S-PLUS). This survey combines a seven narrow +5 broad passband filter system, with a typical photometric-depth of r ∼ 21 AB. For this exercise, we utilize the Data Release 1 (DR1), corresponding to 336 deg2 from the Stripe-82 region. We rely on the BPZ2 code to compute our estimates, using a new library of SED models, which includes additional templates for quiescent galaxies. When compared to a spectroscopic redshift control sample of ∼100 k galaxies, we find a precision of σz <0.8 per cent, <2.0 per cent, or <3.0 per cent for galaxies with magnitudes r < 17, <19, and <21, respectively. A precision of 0.6 per cent is attained for galaxies with the highest Odds values. These estimates have a negligible bias and a fraction of catastrophic outliers inferior to 1 per cent. We identify a redshift window (i.e. 0.26 < z < 0.32) where our estimates double their precision, due to the simultaneous detection of two emission lines in two distinct narrow bands; representing a window opportunity to conduct statistical studies such as luminosity functions. We forecast a total of ∼2 M, ∼16 M and ∼32 M galaxies in the S-PLUS survey with a photo-z precision of σz <1.0 per cent, <2.0 per cent, and <2.5 per cent after observing 8000 deg2. We also derive redshift probability density functions, proving their reliability encoding redshift uncertainties and their potential recovering the n(z) of galaxies at z < 0.4, with an unprecedented precision for a photometric survey in the Southern hemisphere. © 2020 The Author(s)https://academic-oup-com.recursosbiblioteca.unab.cl/mnras/article/499/3/3884/585601

    Galaxy clustering dependence on the [O II] emission line luminosity in the local Universe

    No full text
    We study the galaxy clustering dependence on the [O II] emission line luminosity in the SDSS DR7 Main galaxy sample at mean redshift z ~ 0.1. We select volume-limited samples of galaxies with different [O II] luminosity thresholds and measure their projected, monopole and quadrupole two-point correlation functions. We model these observations using the 1 h-1 Gpc MultiDark-Planck cosmological simulation and generate light cones with the SUrvey GenerAtoR algorithm. To interpret our results, we adopt a modified (Sub)Halo Abundance Matching scheme, accounting for the stellar mass incompleteness of the emission line galaxies. The satellite fraction constitutes an extra parameter in this model and allows to optimize the clustering fit on both small and intermediate scales (i.e. rp ¿ 30 h-1 Mpc), with no need of any velocity bias correction. We find that, in the local Universe, the [O II] luminosity correlateswith all the clustering statistics explored and with the galaxy bias. This latter quantity correlates more strongly with the SDSS r-band magnitude than [O II] luminosity. In conclusion, we propose a straightforward method to produce reliable clustering models, entirely built on the simulation products, which provides robust predictions of the typical ELG host halo masses and satellite fraction values. The SDSS galaxy data, MultiDark mock catalogues and clustering results are made publicly available. © 2017 The Authors.GF is supported by a European Space Agency (ESA) Research Fellowship at the European Space Astronomy Center (ESAC) in Madrid, Spain. GF and CC acknowledge financial support from the Spanish MICINN Consolider-Ingenio 2010 Programme under grant MultiDark CSD2009 - 00064, MINECO Centro de Excelencia Severo Ochoa Programme under grant SEV-2012-0249 and MINECO grant AYA2014-60641-C2-1-P. JC acknowledges financial support from MINECO (Spain) under project number AYA2012 - 31101. Funding for the SDSS and SDSS-II has been provided by the Alfred P. Sloan Foundation, the Participating Institutions, the National Science Foundation, the U.S. Department of Energy, the National Aeronautics and Space Administration, the Japanese Monbukagakusho, the Max Planck Society and the Higher Education Funding Council for England.Peer Reviewe

    Measuring the growth of structure by matching dark matter haloes to galaxies with VIPERS and SDSS

    Get PDF
    none6We test the history of structure formation from redshift 1 to today by matching galaxies from the VIMOS Public Extragalactic Redshift Survey (VIPERS) and Sloan Digital Sky Survey (SDSS) with dark matter haloes in the MultiDark, Small MultiDark Planck (SMDPL), N-body simulation. We first show that the standard subhalo abundance matching (SHAM) recipe implemented with MultiDark fits the clustering of galaxies well both at redshift 0 for SDSS and at redshift 1 for VIPERS. This is an important validation of the SHAM model at high redshift. We then remap the simulation time steps to test alternative growth histories and infer the growth index gamma = 0.6 +/- 0.3. This analysis demonstrates the power of using N-body simulations to forward model galaxy surveys for cosmological inference. The data products and code necessary to reproduce the results of this analysis are available online (https://github.com/darklight- cosmology/vipers-sham).mixedGranett B.; Favole G.; Montero-Dorta A.; Branchini E.; Guzzo L.; de laTorreGranett, B.; Favole, G.; Montero-Dorta, A.; Branchini, E.; Guzzo, L.; De, Latorr

    Holoprosencephaly and genitourinary anomalies in fetal methotrexate syndrome

    No full text
    We study the luminous mass as a function of the dynamical mass inside the effective radius (re) of early-type galaxies (ETGs) to search for differences between these masses. We assume Newtonian dynamics and that any difference between these masses is due to the presence of dark matter. We use several samples of ETGs - ranging from 19 000 to 98 000 objects - from the ninth data release of the Sloan Digital Sky Survey. We perform Monte Carlo (MC) simulations (see Appendix A) of galaxy samples and compare them with real samples. The main results are (i) MC simulations show that the distribution of the dynamical versus luminous mass depends on the mass range where the ETGs are distributed (geometric effect). This dependence is caused by selection effects and intrinsic properties of the ETGs. (ii) The amount of dark matter inside re is approximately 7 22 per cent. (iii) This amount of dark matter is lower than the minimum estimate (10 per cent) found in the literature and four times lower than the average (30 per cent) of literature estimates. However, if we consider the associated error, our estimate is of the order of the literature average. " 2014 The Authors Published by Oxford University Press on behalf of the Royal Astronomical Society.",,,,,,"10.1093/mnras/stu2049.",,,"http://hdl.handle.net/20.500.12104/41970","http://www.scopus.com/inward/record.url?eid=2-s2.0-84924463059&partnerID=40&md5=b2f11ca170c28dc9ae55122cab835ea8",,,,,,"1",,"Monthly Notices of the Royal Astronomical Society",,"8

    Probing galaxy assembly bias with LRG weak lensing observations

    No full text
    International audienceIn Montero-Dorta et al., we show that luminous red galaxies (LRGs) from the SDSS-III Baryon Oscillation Spectroscopic Survey (BOSS) at z ∼ 0.55 can be divided into two groups based on their star formation histories. So-called fast-growing LRGs assemble 80 per cent of their stellar mass at z ∼ 5, whereas slow-growing LRGs reach the same evolutionary state at z ∼ 1.5. We further demonstrate that these two subpopulations present significantly different clustering properties on scales of ∼1−30 Mpc. Here, we measure the mean halo mass of each subsample using the galaxy–galaxy lensing technique, in the 190deg2{\sim }190\deg ^2 overlap of the LRG catalogue and the CS82 and CFHTLenS shear catalogues. We show that fast- and slow-growing LRGs have similar lensing profiles, which implies that they live in haloes of similar mass: log(Mhalofast/h1M)=12.850.26+0.16\log (M_{\rm halo}^{\rm fast}/h^{-1}\mathrm{M}_{{\odot }}) = 12.85^{+0.16}_{-0.26} and log(Mhaloslow/h1M)=12.920.22+0.16\log (M_{\rm halo}^{\rm slow}/h^{-1}\mathrm{M}_{{\odot }}) =12.92^{+0.16}_{-0.22}. This result, combined with the clustering difference, suggests the existence of galaxy assembly bias, although the effect is too subtle to be definitively proven, given the errors on our current weak-lensing measurement. We show that this can soon be achieved with upcoming surveys like DES

    The ninth data release of the Sloan Digital Sky Survey : first spectroscopic data from the SDSS-III Baryon Oscillation Spectroscopic Survey

    Get PDF
    The Sloan Digital Sky Survey III (SDSS-III) presents the first spectroscopic data from the Baryon Oscillation Spectroscopic Survey (BOSS). This ninth data release (DR9) of the SDSS project includes 535,995 new galaxy spectra (median z ∼ 0.52), 102,100 new quasar spectra (median z ∼ 2.32), and 90,897 new stellar spectra, along with the data presented in previous data releases. These spectra were obtained with the new BOSS spectrograph and were taken between 2009 December and 2011 July. In addition, the stellar parameters pipeline, which determines radial velocities, surface temperatures, surface gravities, and metallicities of stars, has been updated and refined with improvements in temperature estimates for stars with Teff −0.5. DR9 includes new stellar parameters for all stars presented in DR8, including stars from SDSS-I and II, as well as those observed as part of the SEGUE-2. The astrometry error introduced in the DR8 imaging catalogs has been corrected in the DR9 data products. The next data release for SDSS-III will be in Summer 2013, which will present the first data from the APOGEE along with another year of data from BOSS, followed by the final SDSS-III data release in 2014 December

    The eleventh and twelfth data releases of the Sloan Digital Sky Survey : final data from SDSS-III

    Get PDF
    The third generation of the Sloan Digital Sky Survey (SDSS-III) took data from 2008 to 2014 using the original SDSS wide-field imager, the original and an upgraded multi-object fiber-fed optical spectrograph, a new nearinfrared high-resolution spectrograph, and a novel optical interferometer. All of the data from SDSS-III are now made public. In particular, this paper describes Data Release 11 (DR11) including all data acquired through 2013 July, and Data Release 12 (DR12) adding data acquired through 2014 July (including all data included in previous data releases), marking the end of SDSS-III observing. Relative to our previous public release (DR10), DR12 adds one million new spectra of galaxies and quasars from the Baryon Oscillation Spectroscopic Survey (BOSS) over an additional 3000 deg2 of sky, more than triples the number of H-band spectra of stars as part of the Apache Point Observatory (APO) Galactic Evolution Experiment (APOGEE), and includes repeated accurate radial velocity measurements of 5500 stars from the Multi-object APO Radial Velocity Exoplanet Large-area Survey (MARVELS). The APOGEE outputs now include the measured abundances of 15 different elements for each star. In total, SDSS-III added 5200 deg2 of ugriz imaging; 155,520 spectra of 138,099 stars as part of the Sloan Exploration of Galactic Understanding and Evolution 2 (SEGUE-2) survey; 2,497,484 BOSS spectra of 1,372,737 galaxies, 294,512 quasars, and 247,216 stars over 9376 deg2; 618,080 APOGEE spectra of 156,593 stars; and 197,040 MARVELS spectra of 5513 stars. Since its first light in 1998, SDSS has imaged over 1/3 of the Celestial sphere in five bands and obtained over five million astronomical spectra
    corecore