397 research outputs found

    Anxiety, emotional processing and depression in people with multiple sclerosis.

    Get PDF
    BACKGROUND: Despite the high comorbidity of anxiety and depression in people with multiple sclerosis (MS), little is known about their inter-relationships. Both involve emotional perturbations and the way in which emotions are processed is likely central to both. The aim of the current study was to explore relationships between the domains of mood, emotional processing and coping and to analyse how anxiety affects coping, emotional processing, emotional balance and depression in people with MS. METHODS: A cross-sectional questionnaire study involving 189 people with MS with a confirmed diagnosis of MS recruited from three French hospitals. Study participants completed a battery of questionnaires encompassing the following domains: i. anxiety and depression (Hospital Anxiety and Depression Scale (HADS)); ii. emotional processing (Emotional Processing Scale (EPS-25)); iii. positive and negative emotions (Positive and Negative Emotionality Scale (EPN-31)); iv. alexithymia (Bermond-Vorst Alexithymia Questionnaire) and v. coping (Coping with Health Injuries and Problems-Neuro (CHIP-Neuro) questionnaire. Relationships between these domains were explored using path analysis. RESULTS: Anxiety was a strong predictor of depression, in both a direct and indirect way, and our model explained 48% of the variance of depression. Gender and functional status (measured by the Expanded Disability Status Scale) played a modest role. Non-depressed people with MS reported high levels of negative emotions and low levels of positive emotions. Anxiety also had an indirect impact on depression via one of the subscales of the Emotional Processing Scale ("Unregulated Emotion") and via negative emotions (EPN-31). CONCLUSIONS: This research confirms that anxiety is a vulnerability factor for depression via both direct and indirect pathways. Anxiety symptoms should therefore be assessed systematically and treated in order to lessen the likelihood of depression symptoms

    TangoSIDM: tantalizing models of self-interacting dark matter

    Get PDF
    Large scale structure and cosmologyGalaxie

    The repulsive lattice gas, the independent-set polynomial, and the Lov\'asz local lemma

    Full text link
    We elucidate the close connection between the repulsive lattice gas in equilibrium statistical mechanics and the Lovasz local lemma in probabilistic combinatorics. We show that the conclusion of the Lovasz local lemma holds for dependency graph G and probabilities {p_x} if and only if the independent-set polynomial for G is nonvanishing in the polydisc of radii {p_x}. Furthermore, we show that the usual proof of the Lovasz local lemma -- which provides a sufficient condition for this to occur -- corresponds to a simple inductive argument for the nonvanishing of the independent-set polynomial in a polydisc, which was discovered implicitly by Shearer and explicitly by Dobrushin. We also present some refinements and extensions of both arguments, including a generalization of the Lovasz local lemma that allows for "soft" dependencies. In addition, we prove some general properties of the partition function of a repulsive lattice gas, most of which are consequences of the alternating-sign property for the Mayer coefficients. We conclude with a brief discussion of the repulsive lattice gas on countably infinite graphs.Comment: LaTex2e, 97 pages. Version 2 makes slight changes to improve clarity. To be published in J. Stat. Phy

    Spanning forests and the q-state Potts model in the limit q \to 0

    Get PDF
    We study the q-state Potts model with nearest-neighbor coupling v=e^{\beta J}-1 in the limit q,v \to 0 with the ratio w = v/q held fixed. Combinatorially, this limit gives rise to the generating polynomial of spanning forests; physically, it provides information about the Potts-model phase diagram in the neighborhood of (q,v) = (0,0). We have studied this model on the square and triangular lattices, using a transfer-matrix approach at both real and complex values of w. For both lattices, we have computed the symbolic transfer matrices for cylindrical strips of widths 2 \le L \le 10, as well as the limiting curves of partition-function zeros in the complex w-plane. For real w, we find two distinct phases separated by a transition point w=w_0, where w_0 = -1/4 (resp. w_0 = -0.1753 \pm 0.0002) for the square (resp. triangular) lattice. For w > w_0 we find a non-critical disordered phase, while for w < w_0 our results are compatible with a massless Berker-Kadanoff phase with conformal charge c = -2 and leading thermal scaling dimension x_{T,1} = 2 (marginal operator). At w = w_0 we find a "first-order critical point": the first derivative of the free energy is discontinuous at w_0, while the correlation length diverges as w \downarrow w_0 (and is infinite at w = w_0). The critical behavior at w = w_0 seems to be the same for both lattices and it differs from that of the Berker-Kadanoff phase: our results suggest that the conformal charge is c = -1, the leading thermal scaling dimension is x_{T,1} = 0, and the critical exponents are \nu = 1/d = 1/2 and \alpha = 1.Comment: 131 pages (LaTeX2e). Includes tex file, three sty files, and 65 Postscript figures. Also included are Mathematica files forests_sq_2-9P.m and forests_tri_2-9P.m. Final journal versio

    IND-Enabling Studies for a Clinical Trial to Genetically Program a Persistent Cancer-Targeted Immune System

    Get PDF
    PURPOSE: To improve persistence of adoptively transferred T-cell receptor (TCR)-engineered T cells and durable clinical responses, we designed a clinical trial to transplant genetically-modified hematopoietic stem cells (HSCs) together with adoptive cell transfer of T cells both engineered to express an NY-ESO-1 TCR. Here, we report the preclinical studies performed to enable an investigational new drug (IND) application. EXPERIMENTAL DESIGN: HSCs transduced with a lentiviral vector expressing NY-ESO-1 TCR and the PET reporter/suicide gene HSV1-sr39TK and T cells transduced with a retroviral vector expressing NY-ESO-1 TCR were coadministered to myelodepleted HLA-A2/Kb mice within a formal Good Laboratory Practice (GLP)-compliant study to demonstrate safety, persistence, and HSC differentiation into all blood lineages. Non-GLP experiments included assessment of transgene immunogenicity and in vitro viral insertion safety studies. Furthermore, Good Manufacturing Practice (GMP)-compliant cell production qualification runs were performed to establish the manufacturing protocols for clinical use. RESULTS: TCR genetically modified and ex vivo-cultured HSCs differentiated into all blood subsets in vivo after HSC transplantation, and coadministration of TCR-transduced T cells did not result in increased toxicity. The expression of NY-ESO-1 TCR and sr39TK transgenes did not have a detrimental effect on gene-modified HSC's differentiation to all blood cell lineages. There was no evidence of genotoxicity induced by the lentiviral vector. GMP batches of clinical-grade transgenic cells produced during qualification runs had adequate stability and functionality. CONCLUSIONS: Coadministration of HSCs and T cells expressing an NY-ESO-1 TCR is safe in preclinical models. The results presented in this article led to the FDA approval of IND 17471

    Colloquium: Mechanical formalisms for tissue dynamics

    Full text link
    The understanding of morphogenesis in living organisms has been renewed by tremendous progressin experimental techniques that provide access to cell-scale, quantitative information both on theshapes of cells within tissues and on the genes being expressed. This information suggests that ourunderstanding of the respective contributions of gene expression and mechanics, and of their crucialentanglement, will soon leap forward. Biomechanics increasingly benefits from models, which assistthe design and interpretation of experiments, point out the main ingredients and assumptions, andultimately lead to predictions. The newly accessible local information thus calls for a reflectionon how to select suitable classes of mechanical models. We review both mechanical ingredientssuggested by the current knowledge of tissue behaviour, and modelling methods that can helpgenerate a rheological diagram or a constitutive equation. We distinguish cell scale ("intra-cell")and tissue scale ("inter-cell") contributions. We recall the mathematical framework developpedfor continuum materials and explain how to transform a constitutive equation into a set of partialdifferential equations amenable to numerical resolution. We show that when plastic behaviour isrelevant, the dissipation function formalism appears appropriate to generate constitutive equations;its variational nature facilitates numerical implementation, and we discuss adaptations needed in thecase of large deformations. The present article gathers theoretical methods that can readily enhancethe significance of the data to be extracted from recent or future high throughput biomechanicalexperiments.Comment: 33 pages, 20 figures. This version (26 Sept. 2015) contains a few corrections to the published version, all in Appendix D.2 devoted to large deformation

    The impact of Stieltjes' work on continued fractions and orthogonal polynomials

    Full text link
    Stieltjes' work on continued fractions and the orthogonal polynomials related to continued fraction expansions is summarized and an attempt is made to describe the influence of Stieltjes' ideas and work in research done after his death, with an emphasis on the theory of orthogonal polynomials
    corecore