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A B S T R A C T 

We introduce the TangoSIDM project, a suite of cosmological simulations of structure formation in a � -self-interacting dark 

matter (SIDM) universe. TangoSIDM explores the impact of large dark matter (DM) scattering cross-sections o v er dwarf 
galaxy scales. Moti v ated by DM interactions that follow a Yukawa potential, the cross-section per unit mass, σ / m χ , assumes a 
velocity-dependent form that a v oids violations of current constraints on large scales. We demonstrate that our implementation 

accurately models not only core formation in haloes but also gravothermal core collapse. For central haloes in cosmological 
volumes, frequent DM particle collisions isotropise the particles orbit, making them largely spherical. We show that the velocity- 
dependent σ / m χ models produce a large diversity in the circular velocities of satellites haloes, with the spread in velocities 
increasing as the cross-sections reach 20, 60, and 100 cm 

2 g 

−1 in 10 

9 M � haloes. The large variation in the haloes internal 
structure is driven by DM particles interactions, causing in some haloes the formation of extended cores, whereas in others 
gra v othermal core collapse. We conclude that the SIDM models from the Tango project offer a promising explanation for the 
diversity in the density and velocity profiles of observed dwarf galaxies. 

Key words: methods: numerical – galaxies: haloes – cosmology: dark matter – cosmology: theory. 
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 I N T RO D U C T I O N  

nco v ering the nature of dark matter (DM) is one of the most
ressing pursuits in modern physics and cosmology. The long- 
eld cosmological paradigm of � collisionless cold dark matter 
 � CDM) accurately predicts the large-scale structure of the Universe 
Planck Collaboration 2020 ; EBOSS Collaboration 2021 ); ho we ver, 
ignificant discrepancies on galactic and sub-galactic scales are 
onstantly challenging it. 

Galactic observations targeting (i) the number of observed satellite 
alaxies, and (ii) the dynamical mass in the inner regions of dwarf
alaxies, are key to understand the nature of DM. The number of
atellite galaxies has introduced the ‘missing satellite problem’, or 
roblem of abundance, stating that CDM simulations o v erpredict 
he abundance of satellites around the Milky Way (hereafter MW) 
Klypin et al. 1999 ; Moore et al. 1999 ). Several works have concluded
hat the missing satellite problem is solved when introducing bary- 
nic effects from supernova feedback and reionization (e.g. Fattahi 
t al. 2016 ; Sawala et al. 2016 ; Wetzel et al. 2016 ; Garrison-Kimmel
t al. 2019 ; Applebaum et al. 2021 ; Engler et al. 2021 ). Ho we ver,
n recent years, the disco v ery of several new satellites, more careful
urv e y selection functions and new development of higher resolution 
imulations, have altered the CDM + baryons predictions, showing 
ow that CDM simulations may underpredict the abundance of 
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uminous satellites (e.g. Kim, Peter & Hargis 2018 ; Jethwa, Erkal &
elokurov 2018 ; Torrealba et al. 2018 ; Kelley et al. 2019 ; Homma
t al. 2019 ; Nadler et al. 2020 ; Kim & Peter 2021 ). 

The dynamical mass in some dwarf galaxies appears to be low
ompared to CDM predictions (e.g. Moore 1994 ; Blok & McGaugh
997 ; Oh et al. 2011 ; Walker & Pe ̃ narrubia 2011 ). CDM simulations
ithout baryons predict that dwarf galaxies reside in dark matter 
aloes that have dense central regions, with a density profile showing
 steep slope and ‘cusp’ shape (Navarro, Frenk & White 1997 ).
ifferently, many dwarf galaxies appear to have lower central 
ensities with a ‘cored’ density profile following a flat slope (Walker
t al. 2010 ; Boylan-Kolchin, Bullock & Kaplinghat 2011 ; Ferrero
t al. 2012 ; Read, Walker & Steger 2019 ). This problem originally
alled the ‘core-cusp problem’ is also referred as ‘diversity problem’ 
ue to the large variety in shape and central densities in the local
warf galaxies (e.g. Read et al. 2019 ; Hayashi, Chiba & Ishiyama
020 ), as well as in several galaxy rotation curves (e.g. Oman et al.
015 ; Read et al. 2016 ; Tollet et al. 2016 ; Relatores et al. 2019 ; Ren
t al. 2019 ; Santos-Santos et al. 2020 ). 

An additional disagreement between the prediction of CDM 

imulations and observations is the so-called too-big-to-fail problem, 
hich states that the most massive haloes in CDM simulations are

oo dense in the centre to host the observed luminous MW satellites
Bo ylan-Kolchin et al. 2011 ; Bo ylan-Kolchin, Bullock & Kaplinghat
012 ). The too-big-to-fail is a problem related to the internal structure
f haloes that has not only been found in the MW satellites but also
n the ones of M31 (Tollerud, Boylan-Kolchin & Bullock 2014 ), and
is is an Open Access article distributed under the terms of the Creative 
ch permits unrestricted reuse, distribution, and reproduction in any medium, 
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n galaxies from the field (Garrison-Kimmel et al. 2014 ; Papastergis
t al. 2015 ). 

To this day, CDM with the addition of baryons, does not seem to
onvincingly solve the missing satellite (e.g. Graus et al. 2018 ; Kelley
t al. 2019 ), the to-big-to-fail problem (e.g. Kaplinghat, Valli & Yu
019 ), nor the cusp/core/diversity problem (e.g. Santos-Santos et al.
020 ). In the latter, baryonic feedback processes from star formation
nd superno va e xplosions produce gravitational fluctuations that
llow the redistribution of dark matter, and the formation of cores
Go v ernato et al. 2012 ). But this appears to be very model dependent
e.g. Dutton et al. 2020 ), with numerical simulations producing either
oo many cores in dwarf galaxies of M DM 

∼ 10 9 –10 10 M � (e.g. Di
intio et al. 2014 ; Tollet et al. 2016 ; Hopkins et al. 2018 ; Lazar et al.
020 ) or none at all (e.g. Bose et al. 2019 ). 
This moti v ates to question the nature of DM and to consider DM

hysics beyond standard models. A promising alternative to CDM
s to assume non-gravitational interactions among DM particles
Spergel & Steinhardt 2000 ). These types of DM models, widely
nown as ‘self-interacting dark matter’ (hereafter SIDM), consider
hat DM particles experience collisions with each other. DM particle
ollisions transfer heat towards the colder central regions of DM
aloes, lowering central densities and creating constant density cores
e.g. Dav ́e et al. 2001 ; Col ́ın et al. 2002 ; Vogelsberger, Zavala &
oeb 2012 ; Rocha et al. 2013 ; Dooley et al. 2016 ; Robles et al. 2019 ;
ogelsberger et al. 2019 ). 
The cross-section per unit mass, σ / m χ , is the main parameter

hat controls the rate of DM particles interactions in numerical
imulations (e.g. Robertson, Massey & Eke 2017 ; Kahlhoefer et al.
019 ; Kummer et al. 2019 ; Robertson et al. 2019 ; Banerjee et al.
020 ; Shen et al. 2021 , among others), as well as in semi-analytic
odels (e.g. Balberg, Shapiro & Inagaki 2002 ; Ahn & Shapiro 2005 ;
ssig et al. 2019 ; Nishikawa, Boddy & Kaplinghat 2020 ). A low
ross-section ( σ / m χ < 1 cm 

2 /g) produces low DM collisions rates,
llowing DM haloes to k eep cusp y density profiles. Alternatively,
igh cross-sections ( σ / m χ > 1 cm 

2 g −1 ) lead to very frequent DM
ollisions that are able to produce central density cores (e.g. Rocha
t al. 2013 ; Zavala, Vogelsberger & Walker 2013 ). 

In the regime of very large cross-sections (e.g. σ / m χ >

0 cm 

2 g −1 ), DM particle interactions are so frequent that they are
ble to rapidly heat the central DM halo core, causing it to contract
nd raise in density. In this regime, known as gra v othermal core
ollapse (Balberg et al. 2002 ; Elbert et al. 2015 ), DM haloes form a
ensity core early on, which changes to a cuspy profile at latter times.
lthough it has been known for some time that it takes longer than
 hubble time for a halo to enter in the gra v othermal core collapse
egime (Balberg et al. 2002 ; Koda & Shapiro 2011 ; Sameie et al.
020 ), recent studies of satellites have changed this and showed
hat the gra v othermal collapse is accelerated by mass-loss via tidal
tripping (Nishikawa et al. 2020 ). In fact, not very eccentric orbits,
or e xcessiv e mass-loss, are needed for satellite haloes to enter in
ra v othermal core collapse (Kahlhoefer et al. 2019 ; Carton Zeng
t al. 2022 ; Turner et al. 2021 ). 

Several studies have constrained the cross-section to be smaller
/ m χ < 1.25 cm 

2 g −1 on galaxy cluster scales (see e.g. Randall
t al. 2008 ; Dawson et al. 2013 ; Jee et al. 2014 ; Massey et al. 2015 ;
ittman, Golo vich & Da wson 2018 ; Harv e y et al. 2019 ; Sagunski

t al. 2021 ; Andrade et al. 2022 ). On dwarf galaxy scales, current
onstraints of σ / m χ rely on predicting the DM density profile of
alaxies following the isothermal Jeans modelling. In this manner,
ead, Walker & Steger ( 2018 ) analysed the density profile of Draco,
 cuspy MW dwarf spheroidal galaxy (dSph), and concluded that
ts high central density gives an upper bound on the SIDM cross-
NRAS 517, 3045–3063 (2022) 
ection of σ / m χ < 0.57 cm 

2 g −1 . While Valli & Yu ( 2018 ) derived a
imilar upper limit on σ / m χ for Draco (but probed different cross-
ections, ranging between 0.1 and 40 cm 

2 g −1 , for the remaining
Sphs, see also Kaplinghat, Tulin & Yu 2016 ), others (e.g. Hayashi
t al. 2021 ; Ebisu, Ishiyama & Hayashi 2022 ) analysed the cuspy
rofiles of some dwarfs and ultra-faint dwarfs, and concluded that
ero self-interactions are fa v oured. Although this method provides an
ccurate description of simulated SIDM density profiles (Robertson
t al. 2021 ), it does not consider the gra v othermal core collapse
cenario. Therefore, cuspy galaxy DM profiles can only result from
ow σ / m χ . 

In a scenario where SIDM has a large σ / m χ on dwarf galaxy
cales, galaxies in small pericenter orbits that have lost mass from
idal stripping, can quickly enter in gra v othermal core collapse and
xhibit a cuspy DM density profile. Differently, satellite galaxies
hat have not lost mass from tidal interactions are able to keep a
at density core. This naturally gives rise to a diversity in the shape
f DM density profiles in systems that are quite DM-dominated,
nd therefore not expected to be altered by the presence of baryons
see e.g. Oman et al. 2015 ). Interestingly, Kaplinghat et al. ( 2019 )
eported an anticorrelation between the central DM densities of the
right dwarf spheroidal galaxies of the MW (dSphs) and their orbital
ericenter distances, so that the dSphs that have come closer to the
W centre are more dense in DM than those that have not come so

lose. This anticorrelation has been proposed as a potential signature
f SIDM (Correa 2021 ), with σ / m χ depending on the relative velocity
f DM particles, in such a way that DM behaves almost collisionless
 v er cluster scales but as a collisional fluid on satellite galaxy
cales. Correa ( 2021 ) derived a semi-analytic model of the local
Sphs evolution, to determine the range of σ / m χ able to explain the
arge central densities of the dwarfs under the gra v othermal core-
ollapse re gime. The y found that the densities of dSphs, such as
arina and Fornax, can be explained with σ / m χ ranging between 30
nd 50 cm 

2 g −1 , whereas other dSphs prefer larger values ranging
etween 70 and 100 cm 

2 g −1 . 
A velocity-dependent SIDM cross-section model, where DM

ehaves as a collisional fluid on small scales while it is essentially
ollisionless o v er large scales, has been suggested as early as
oshida et al. ( 2000 ). In addition, particle physics models fa v our
uch framework for the DM particle (e.g. Buckley & Fox 2010 ;
oddy et al. 2014 ), arguing that DM exists in a ‘hidden sector’,
here forces between DM particles are mediated by analogues to

lectroweak or strong forces (e.g. Pospelov, Ritz & Voloshin 2008 ;
rkani-Hamed et al. 2009 ; Buckley & Fox 2010 ; Feng, Kaplinghat &
u 2010 ; Boddy et al. 2014 ; Tulin & Yu 2018 ). While studies
n galaxy clusters scales have set robust upper limits on the DM
elf-interaction cross-section, robust constraints of σ / m χ on dwarf
alaxy scales are currently missing. The possibility of gra v othermal
ore collapse indicates that σ / m χ could be larger than 10 cm 

2 g −1 

n dwarf galaxy scales (Correa 2021 ). But more thorough studies
ith detailed modelling of SIDM, and galaxy formation in a cosmo-

ogical context, are needed to prove or rule out scenarios of large
/ m χ . 
The goal of this study is to impro v e the current modelling of

warf galaxies embedded in an SIDM universe, in order to derive
obust constraints of large σ / m χ on dwarf galaxy scales, and to pro v e
or alternatively rule out) that large σ / m χ can explain the diversity
n the density and velocity profiles of observed dwarf galaxies. To
o so we introduce the ‘TANtalasinG mOdels of Self-Interacting
ark Matter’ project (hereafter TangoSIDM). TangoSIDM consists
f a suite of cosmological, hydrodynamical simulations of structure
ormation in a � -SIDM universe. The main models presented in
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Figure 1. Momentum transfer cross-sections as a function of relative DM 

particles scattering velocity of the SIDM models presented in this work (see 
Table 1 ). The figure highlights three velocity-dependent models (dark blue, 
light blue, and orange lines), where σ T / m χ reaches 100, 60, and 20 cm 

2 g −1 

on 10 9 M � dwarf galaxies. Additionally, three constant cross-section models 
are also studied, σ T / m χ = 10 and 1 cm 

2 g −1 (black dashed and dotted lines) 
and σ T / m χ = 0 (CDM). While the bottom x -axis highlights the relative 
velocity between DM particles, the top x -axis indicates the typical halo mass 
that hosts orbits of such velocities. The labels of the different curves indicate 
the simulations names. 
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his work are dark matter-only volumes of 25 comoving Mpc on 
 side and employ a resolution that allows the study of satellite
aloes as small as 10 9 M �. The simulations use state-of-the-art
umerical techniques and new modelling of the DM-DM particles 
nteractions. The TangoSIDM suite includes many simulations that 
ill be presented in future works, including simulations using state- 
f-the-art galaxy formation models. In this study, we present and 
escribe in detail the methodology employed to model SIDM in a 
osmological set-up. Additionally, we analyse the dark matter-only 
imulations and show the first results on the DM haloes’ internal 
tructure from TangoSIDM. 

This paper is organized as follows. Section 2 describes the 
elocity-dependent cross-section assumed to model the DM particles 
nteractions (Section 2.1). It also outlines the simulations (Sec- 
ion 2.2) and the details of the SIDM implementation (Section 2.3). 
ection 3 presents our results. A brief discussion is presented in 
ection 4 . Finally, we summarize our key results in Section 5 .
n addition, comparison with previous works, as well as further 
alidation and numerical convergence tests, are included in the 
ppendix sections. 

 SELF-INTERAC TING  DA R K  MATTER  

O D E L S  

.1 Scattering cross-section 

o model the interaction among DM particles, we assume that DM 

articles χ interact under the exchange of a light mediator φ, with 
he scattering following a Yukawa potential, 

 ( r) = −αχ e −m φr 

r 
, (1) 

here αχ ≡ g 2 χ/ 4 π is the dark fine structure constant and g χ the
oupling strength, m φ is the mediator mass, and we define m χ as
he dark matter mass. There is no analytical form for the differential
cattering cross-section due to a Yukawa potential, but by using 
he Born-approximation (Ibe & Yu 2010 ), valid when the scattering 
otential can be treated as a small perturbation, the differential cross-
ection of the DM–DM interactions results: 

d σ

d �
= 

α2 
χ

m 

2 
χ ( m 

2 
φ/m 

2 
χ + v 2 sin 2 ( θ/ 2)) 2 

, (2) 

hich gives the following total cross-section, 

≡
∫ 

d σ

d �
d � = 

4 πα2 
χ

m 

2 
χ ( m 

2 
φ/m 

2 
χ + v 2 ) 

. (3) 

In this velocity-dependent model, the scattering is anisotropic. 
his is because the velocity dependence results from a term in the
cattering cross-section that depends on the exchanged momenta, 
hich in turn depends on both the collision velocity and the 

cattering angle. For anisotropic scattering, it is useful to consider 
he momentum transfer cross-section, 

T /m χ ≡ 2 
∫ 

(1 − | cos θ | ) d σ
d �

d �, (4) 

or which interactions that lead to a large amount of momentum 

ransfer contribute more, while those that transfer little momentum 

re down-weighted. Kahlhoefer et al. ( 2015 ) shows that the momen-
um transfer cross-section needs to be weighted by the scattering 
ngle, in order to a v oid o v erestimating the momentum transfer due
o scattering with θ > π /2, as in these cases the particles, which we
ssume to be identical, could be relabelled in such a way that they
ad scattered with θ < π /2. 

While Robertson et al. ( 2017 ) (see also Banerjee et al. 2020 )
mplemented anisotropic scattering following equation ( 2 ), others 
e.g. Vogelsberger et al. 2012 ; Zavala et al. 2013 ; Vogelsberger et al.
016 ; Carton Zeng et al. 2022 ) have instead simulated the scattering
s isotropic but with a modified cross-section (e.g. equation 4 ), so
hat the effects of DM scattering closely follow the correct modelling
f the particles interactions. 
Fig. 1 shows the momentum transfer cross-sections of the SIDM 

odels adopted in this work. The figure highlights three velocity- 
ependent models (dark blue, light blue, and orange lines), where 
T / m χ reaches 100, 60, and 20 cm 

2 g −1 on 10 9 M � dwarf galaxies.
dditionally, three constant cross-section models are considered 
T / m χ = 10 and 1 cm 

2 g −1 (black dashed and dotted lines) and
T / m χ = 0 (CDM, not shown). While the bottom x -axis shows the

elativ e v elocity between DM particles, the top x -axis indicates the
ypical halo mass that hosts circular orbits of such velocities. 

The resulting σ / m χ depends on the DM particles velocity, the DM
article mass, m χ , the mediator mass, m φ , and coupling strength, α of
he interaction. These parameters have been adjusted so that the rate
f scattering is important in dwarf DM haloes while being negligible
n more massive (e.g. > 10 11 . 5 M �) haloes. This was done in order
o a v oid the destruction of satellite haloes in the simulations from
 xcessiv e interactions between the DM particles from satellites and
he host (Nadler et al. 2020 ). Additionally, the velocity-dependent 

odels are in agreement with the strong observational constraints 
rom cluster-size haloes (see e.g. Miralda-Escud ́e 2002 ; Randall et al.
008 ; Harv e y et al. 2015 ; Kim, Peter & Wittman 2017 ; Wittman
t al. 2018 ; Harv e y et al. 2019 ; Sagunski et al. 2021 ). The models
ighlighted in dark blue line in Fig. 1 has been fitted so that it matches
he recent estimates of σ / m χ on dwarf galaxy scales done by Correa
 2021 ). Note that although the model with σ / m χ = 10 cm 

2 g −1 has
MNRAS 517, 3045–3063 (2022) 

art/stac2830_f1.eps
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M

Table 1. SIDM models analysed in this work. From left to right: Simulation name, SIDM parameters for each model (dark matter mass, m χ , mediator 
mass, m φ , and coupling strength, α), momentum-transfer cross-section at a relativ e v elocity between DM particles of 10, 50, and 100 km s −1 , DM type of 
interaction. 

SIDM parameters Cross section DM interaction 
Simulation m χ m φ α σ T / m χ (10 km s −1 ) σ T / m χ (50 km s −1 ) σ T / m χ (100 km s −1 ) 
Name (GeV) (MeV) (cm 

2 g −1 ) (cm 

2 g −1 ) (cm 

2 g −1 ) 

CDM / / / 0 0 0 No interaction 
SigmaConstant1 / / / 1 1 1 Isotropic 
SigmaConstant10 / / / 10 10 10 Isotropic 
SigmaVel20 3.056 0.309 4.96 × 10 −6 20 5 1 Anisotropic 
SigmaVel60 3.855 0.356 1.02 × 10 −5 60 12 2.5 Anisotropic 
SigmaVel100 4.236 0.350 1.23 × 10 −5 100 19 3 Anisotropic 
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een ruled out by observations of galaxy clusters, it will be used as
 control model. 

.2 Simulations 

he simulations analysed in this paper are part of the TangoSIDM
roject, a simulation suite project that models cosmological simu-
ations of structure formation in a � SIDM universe. TangoSIDM
onsists on a set of DM-only and hydrodynamical cosmological
imulations of 25 Mpc on a side. These simulations have been pro-
uced using the SWIFT 1 code (Schaller et al. 2016 , 2018 ) that has been
nhanced to include new DM physics modules (Section 2.3 ). SWIFT is
n open-source, fast and accurate gravity and hydrodynamics solver
hat was specifically designed to be efficient on many core systems
ith se veral le vels of parallelization including vectorization. It uses

tate-of-the-art algorithms to solve the equations of hydrodynamics
nd a modern gravity solver. 

The analysis in this work focuses on six DM-only simulations of
25 Mpc) 3 that follows the evolution of 752 3 DM particles, reaching a
patial resolution of 650 pc and a mass resolution of 1 . 44 × 10 6 M �.
e use a comoving softening of 1.66 kpc at early times, which

reezes at a maximum physical value of 650 pc at z = 2.8. The
tarting redshift of these simulations is z = 127. The initial conditions
ere calculated using second-order Lagrangian perturbation theory
ith the method of Jenkins ( 2010 , 2013 ). The adopted cosmological
arameters are �m 

= 0.307, �� 

= 0.693, h = 0.6777, σ 8 = 0.8288,
nd n S = 0.9611. 

Table 1 highlights the SIDM model parameters adopted in this
ork. Each simulation from the TangoSIDM suite includes a different
M model, while three simulations have a constant scattering cross-

ection, σ / m χ , of 10 cm 

2 g −1 (named SigmaConstant10), 1 cm 

2 g −1 

SigmaConstant1), and 0 cm 

2 /g (CDM), the other cosmological
ox es hav e a σ / m χ that depends on the particles velocity, as indicated
y equation ( 3 ). Table 1 shows the σ T / m χ for the velocity-dependent
odels at DM particles velocities of 10, 50, and 100 km s −1 . The
odel that reaches σ T / m χ = 100 cm 

2 g −1 at 10 km s −1 is called
igmaVel100, similarly, the models reaching 60 and 20 cm 

2 g −1 at
0 km s −1 are called SigmaV el60, and SigmaV el20, respectively. The
able indicates which models assume either isotropic or anisotropic
catter, and it also includes the values of the m χ , m φ , and α parameters
hat describe the velocity-dependent cross-sections. 

Halo catalogues and merger trees were generated using the
ELOCIraptor halo finder (Elahi, Thacker & Widrow 2011 ; Elahi

t al. 2019a ; Ca ̃ nas et al. 2019 ). VELOCIraptor uses a 3D friends-of-
riends (FOF) algorithm (Davis et al. 1985 ) to identify field haloes,
NRAS 517, 3045–3063 (2022) 
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nd subsequently applies a 6D-FOF algorithm to separate virialized
tructures and identify subhaloes of the parent haloes (Elahi et al.
019a ). To link haloes through time, we use the halo merger tree code
reeFrog (Elahi et al. 2019b ), developed to work on the outputs of
ELOCIraptor. Throughout this work, virial halo masses ( M 200 c ) are
efined as all matter within the virial radius R 200 c , for which the mean
nternal density is 200 times the critical density. In each FOF halo,
he ‘central’ halo is the halo closest to the centre (minimum of the
otential), which is nearly al w ays the most massive. The remaining
aloes within the FOF halo are its satellites, also called subhaloes.
or satellites, we do not use M 200 c for their mass definition, instead we
se M peak defined as the M 200 c mass that the satellite had before being
ccreted by a central more massive halo, and becoming a satellite.
ELOCIraptor provides virial masses and radii for subhaloes, as well

s for the main haloes. Additionally, it calculates the concentration
arameter ( c 200 c ), defined as the ratio between R 200 c and the scale
adius, r s (radius at which the logarithmic density slope is −2). The
article mass resolution of the simulations is sufficient to resolve
sub-)haloes down to ∼10 9 M � with 10 3 particles. 

.3 Self-interacting dark matter implementation 

e have modelled the interaction between DM simulation particles
ollowing a stochastic approach, where two DM particles a and b
ave a probability of interaction, P ab , that depends on σ / m χ , as well
s on the distance ( δr ab ) and relative velocity between them ( | v a −
 b | ) as follows: 

 ab = m b ( σ/m χ ) | v a − v b | g ab ( δr ab ) �t, (5) 

here 

 ab ( δr ab ) = N 

∫ max ( h a ,h b ) 

0 
d 3 r ′ W ( | r ′ | , h a ) W ( | δr ab + r ′ | , h b ) , (6) 

ith W the particles kernel and N a normalization factor. The
eri v ation and full terms of the DM particles probability is further
etailed in Appendix A . For the simulations where the cross-
ection is velocity dependent, the term σ / m χ in equation ( 5 ) is given
y equation ( 3 ) and therefore it depends on the particles’ relative
elocity. In the simulations with constant cross-section, the term
/ m χ is constant and set to the value assumed in the simulation (1

or SigmaConstant1, or 10 for SigmaConstant10). 
In equation ( 6 ), the parameters h a and h b are the particles’ search

adii. The search radius, which encloses a region where a DM particle
as the probability of interacting with its neighbours, is not constant,
nstead it follows the smoothing length of the DM particles kernel
sing an approach similar to SPH (e.g. Price 2012 ). It is therefore
djusted according to the local DM density, allowing to better track
he centre of objects. 

https://swift.dur.ac.uk
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We compare P ab with a random number (that ranges between 0 and
), if P ab is larger, the particles a and b are to scatter. Then, given the
articles velocities v a and v b , we move to the centre of momentum
rame where the velocities result v 

′ 
a and v 

′ 
b = −v 

′ 
a . We use the

irection of v 
′ 
a to define the z-axis, from which the polar scattering

ngle θ is measured. Given the two angles, θ and azimuthal φ, that 
etermine the unit vector ˆ e , the post-scatter velocities are 

˜  a = V − w ˆ e , (7) 

˜  b = V + w ˆ e , (8) 

here V = ( v a + v b )/2, w = | v a − v b | /2. 
In the simulations, SigmaVel100, SigmaVel60, and SigmaVel20, 

here the cross-section is velocity dependent, the interactions are 
odelled as elastic and anisotropic collisions. We assume that the 

cattering potential follows the Yukawa potential (introduced in 
ection 2.1 ) that produces an azimuthally symmetric differential 
ross-section (equation 2 ), with a total cross-section as indicated in 
quation ( 3 ). We determine the polar angle of scattering, θ , following
he probability density function, 

( θ ) = 

2 π sin θ

σ

d σ

d �
. (9) 

here d σ /d � is given by equation ( 2 ) and σ given by equation ( 3 ).
ntegrating p ( θ ), we obtain the cumulative distribution function 

 ( θ ) = 

∫ θ

0 
p( θ ′ )d θ ′ , (10) 

f the probability that a particle scatters by an angle less than θ . We
raw a random variable, X , with a uniform distribution in the interval
0, 1], and calculate θ , so that P ( θ ) = X . 

In the simulations SigmaConstant1 and SigmaConstant10, where 
he cross-section is constant, d σ

d � = 

σ
4 π . In this case, the particles 

ollisions are isotropic, where θ = arccos (1 − 2 X), and X and φ are
rawn from uniform distributions in the interval [0, 1] and [0, 2 π ],
espectively. 

SWIFT uses a KDK leapfrog time-stepping scheme, 

 i+ 1 / 2 = v i + a i �t/ 2 , 

x i+ 1 = x i + v i+ 1 / 2 �t, 

v i+ 1 = v i+ 1 / 2 + a i+ 1 �t/ 2 , 

here x i and v i are the positions and velocities at time-step i , a i =
 ( x i ) is the acceleration, or second deri v ati ve of x , at step i , � t is
he size of each time-step, and x i + 1 , v i + 1 and a i + 1 correspond
o positions, velocities, and accelerations at step i + 1. The SIDM
cattering implementation modifies this scheme by inserting an extra 
ick driven by the collision between two particles. The extra kick 
odifies the initial particles’ velocity, v i + 1/2 into ˜ v i+ 1 / 2 , SIDM 

, here 
 i + 1/2 corresponds to the particles velocity after kick 1: 

( �t/ 2) : v i+ 1 / 2 = v i + a i ( x i ) �t/ 2 , 

D( �t) : x i+ 1 = x i + v i+ 1 / 2 �t, 

S( �t) : ˜ v i+ 1 / 2 , SIDM 

= Scatter ( v i+ 1 / 2 , x i+ 1 , �t) , 

( �t/ 2) : ˜ x i+ 1 = x i+ 1 − v i+ 1 / 2 �t/ 2 + ˜ v i+ 1 / 2 , SIDM 

�t/ 2 , 

( �t/ 2) : v i+ 1 = ˜ v i+ 1 / 2 , SIDM 

+ a i+ 1 ( ̃  x i+ 1 ) �t/ 2 . 

After the extra kick is introduced, the particles involved are drifted 
ackwards half a step and then drifted forward half a step with the new
elocities. SIDM kicks are assumed to be instantaneous, particles 
elocities are modified and also their positions. It is important to note
hat if an acti v ated DM particle in the time-step i kicks an inactive
eighbour, the inactive particle is aw ak ened for the following time-
tep and drifted accordingly. 

The SIDM scattering is implemented on a particle-pair by particle- 
air basis. The higher the cross-section, the larger the probability of
articles scattering, the larger the scattering events for the same 
article in a single time-step. To conserve energy, it is important
hat the scattering events are dealt in an appropriate way. Since the

omentum kick from one scattering event alters the velocities of the
articles for any future scattering event, we cannot allow a particle
o scatter twice (or more) in a single time-step with the same initial
elocity. Therefore, we follow Vogelsberger et al. ( 2012 ) and choose
he individual particles time-step � t i small enough by requiring that 

t i < κ × [ ρa 

〈
σ/m χ

〉
( v a ) σv,a ] 

−1 , (11) 

here κ = 10 −2 , ρa is the density of the DM particle a , 〈 σ / m χ 〉 is the
verage total cross-section of the particle a mo ving with v elocity v a 
elative to its neighbours, and σ v, a is the velocity dispersion at the
osition of particle a . When comparing � t with the gravity time-step
riterion � t grav ( �t grav ∝ 

√ 

ε/ | a | , with ε softening and a gravitational
cceleration), we find that for the SigmaConstant1 model � t is
l w ays larger than � t grav , except for the inner regions ( < 3–5 kpc) of
aloes more massive than 10 11 M �, where � t < � t grav by up to a
actor of 5. In the SigmaConstant10 model the same occurs, except
hat � t is a factor of 5–10 smaller than � t grav in the inner regions
f haloes more massive than 10 10 M �. In the SigmaVel models, � t
apidly decreases in the inner regions (due to the increase of σ T / m χ ),
eaching up to a factor of 100 lower values than � t grav . This results
n the SigmaVel models being computationally more e xpensiv e than
he SigmaConstant1 and SigmaConstant10, and also CDM models. 
o we ver, we find it necessary to implement equation ( 11 ) in order

o accurately model the scattering events. 
Further details of the model, including validation tests and compar- 

sons with previous simulation efforts, are included in Appendices A 

nd B . 

 RESULTS  

his section presents the first results of the TangoSIDM simulations. 
e analyse the evolution of satellites and the impact of the DM

articles interactions in their internal structure. 

.1 Subhalo population 

he simulations from the TangoSIDM project are all run from the
ame initial conditions; therefore, it is possible the match the z =
 central haloes between simulations and compare their respective 
ubhalo population. Fig. 2 shows density projections of the same 
entral halo for the different models listed in Table 1 . The projection
ubes have a side length of 300 kpc. In the CDM simulation (top
eft-hand panel), the central halo has a M 200 c mass of 3 . 7 × 10 11 M �,
 virial radius of 151 kpc and 77 satellites more massive than 10 8 M �
hat reside within R 200 c . The SigmaConstant10 model (top right-hand 
anel) depicts a more spherical looking halo of lower mass and fewer
umber of satellites. As expected, the frequent DM particle collisions 
n this simulation isotropise the particles orbit and produce a more
pherical configuration (Miralda-Escud ́e 2002 ; Vogelsberger et al. 
012 ; Peter et al. 2013 ). 
The visual impression from Fig. 2 shows that while the halo in

he SigmaConstant10 model is quite spherical, it is elliptical in 
he SigmaVel20 model (bottom left-hand panel), looking similar 
o CDM (top left-hand panel). This is because at the scale of
0 11 M �, SigmaVel20 is characterized by a momentum-transfer 
MNRAS 517, 3045–3063 (2022) 
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Figure 2. Density projections of the same central halo for some of the different models listed in Table 1 . The central halo has a mass of 3 . 7 × 10 11 M �
(CDM case, top left-hand panel), note, ho we ver, that this can vary depending on the SIDM model. The projection cube has a side length of 300 kpc. The 
SigmaConstant10 model (top right-hand panel) that has a constant cross-section of 10 cm 

2 g −1 , not only largely destroys the surrounding low-mass subhaloes 
but also thermalizes the central halo, changing its elongated shape (as seen from the top left-hand panel) to spherical. The velocity-dependent model, SigmaVel20 
(bottom left-hand panel), cannot be easily distinguished from the CDM case. The SigmaVel60 (bottom right-hand panel) shows a spherical-looking central halo 
but without subhalo disruption. 
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ross-section of ∼1 cm 

2 g −1 (see Fig. 1 ), and therefore the rate
f interactions is lower than in SigmaConstant10. In SigmaVel60
bottom right-hand panel), σ T / m χ reaches 3–4 cm 

2 g −1 , and that
eems to be a sufficient increase in σ T / m χ relative to the SigmaVel20
odel to modify the halo’s shape and make it slightly more

pherical. 
SIDM interactions not only isotropise the DM particles’ orbit but

lso enhance the disruption of subhaloes by tidal stripping from
NRAS 517, 3045–3063 (2022) 
he host (Vogelsberger et al. 2012 ; Nadler et al. 2020 ). The density
rojection from Fig. 2 shows a larger number of destroyed satellites in
he SigmaConstant10 model, relative to the SigmaVel models. Note
hat in the former the cross-section has no velocity dependence, the
ate of particle scattering is independent of the halo mass. This causes
 larger number of DM particle interactions between the host and the
atellite haloes. Although this model is ruled out by observational
onstraints, it still serves as a control study. It is interesting to also

art/stac2830_f2.eps
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Figure 3. The average cumulative number of satellite haloes more massive 
than 10 8 M �, as a function of the distance from the halo centre (normalized 
by the virial radius, R 200 c ). Colour lines show the number of satellites in 
the CDM (orange line), SigmaConstant10 (red line), SigmaVel20 (light blue 
line), SigmaVel60 (dark blue line), and SigmaVel190 (green line) models. 
Dashed (solid) lines highlight the number of satellites around central haloes 
with M 200 c masses between 10 11.9 and 10 12 . 1 M � (10 11 . 4 –10 11 . 6 M �). There 
is no significant satellite disruption in the 10 12 M � haloes from the SigmaVel 
models relative to CDM. SigmaConstant10 shows lower number of satellites 
in both the 10 11.5 and 10 12 M � central haloes. In the 10 11 . 5 M � haloes, the 
SigmaVel60 and SigmaVel100 models have a lower number of satellites than 
SigmaVel20 and CDM, but a larger number relative to SigmaConstant10. 
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2 Relaxing Power et al. ( 2003 ) criterion corresponds to calculating R P 03 

as 0 . 15 ≤
√ 

200 
8 

√ 

4 πρcrit 
3 m DM 

√ 

N( <R P 03 ) 
ln N( <R P 03 ) 

R 

3 / 2 
P 03 , where N ( < r ) is the number of 

particles of mass, m , within radius r . 
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ote that while SigmaVel60 model depicts a rather spherical-looking 
entral halo, it does not seem to largely disrupt its subhalo population.

To better understand the rate of subhalo disruption in the different 
IDM models, Fig. 3 shows the cumulative number of satellite 
aloes around central haloes. We calculate the cumulative number 
f satellites around each central halo in radial bins of 0.05 × R 200 c ,
nd then estimate the median. We select satellites more massive 
han 10 8 M � that orbit central haloes with virial masses between 
0 11 . 4 and 10 11 . 6 M � (solid lines), and between 10 11.9 and 10 12 . 1 M �
dashed lines). We do not find significant satellite disruption in the 
10 12 M � haloes from the SigmaVel models relative to CDM. As

xpected, SigmaConstant10 sho ws lo wer number of satellites in 
oth, the ∼10 11.5 and ∼10 12 M � central haloes. Interestingly, in the 
0 11 . 5 M � haloes, the SigmaVel60 and SigmaVel100 models have a 
ower number of satellites than SigmaVel20 and CDM, but a larger 
umber relative to SigmaConstant10. This indicates that even though 
he cross-section is velocity dependent, there is still an impact of the
articles collisions on the subhalo destruction. 

.2 Density profiles 

n this section, we explore how the different rate of DM particles
nteractions shape the density profiles of central and satellite haloes. 

e select haloes with virial masses around 10 9 M �, 10 10 M �, and
0 11 M � (within 0.2 dex) and calculate the median densities in 
ogarithmic radial bins of 0.2 dex. Fig. 4 shows the density profiles
f central (top panels) and satellite (bottom panels) haloes from 

he CDM (orange lines), SigmaConstant10 (red lines), SigmaVel20 
light blue lines), SigmaVel60 (dark blue lines), and SigmaVel100 
green lines) models. The left-hand panel includes 10 9 M � haloes, 
he middle panel 10 10 M � haloes, and the right-hand panel 10 11 M �
aloes. 
For comparison, we include the NFW density profile in the top pan- 
ls (solid black lines), which we estimated using the concentration–
ass relation from Correa et al. ( 2015 ). We also include the softening

grey-dashed lines) and a convergence radius (green dash–dotted 
ines). The original convergence criterion derived by Power et al. 
 2003 ), defined a convergence radius, R P 03 , as the minimum radius
here the mean density converges at the 10 per cent level relative to a

imulation of higher resolution. Ho we ver, because our SIDM models
roduce a larger variation in the haloes’ internal density relative to the 
DM simulation, we follow Schaller et al. ( 2015 ) and relax Power
t al. ( 2003 ) convergence criterion requiring that the mean internal
ensity converges at the 50 per cent level instead. 2 R P 03 then results
1.6 kpc for 10 9 M � haloes, 1.3 and 1 kpc for 10 10 M � and 10 11 M �

aloes, respectively. 
The top panels of Fig. 4 show that while there is no visible core

ormation in the 10 9 M � haloes, higher mass haloes begin to exhibit
 core. It can be seen from the top right-hand panel that 10 11 M �
aloes in the SigmaConstant10 model form the largest core, reaching 
oughly a constant density of 2 × 10 7 M � kpc −3 . In this constant
ross-section model, core expansion maximizes in high-mass haloes. 
his is expected since the scattering rate of DM particles, �( r ) =
 σ / m χv pair 〉 ( r ) ρ( r ), depends on the local density, so that DM particles
n high-mass ( ∼10 11 M �) haloes, with typical central densities that
each 10 8 M � kpc −3 , experience more frequent collisions, than lower
ass haloes. Frequent DM particles collisions expel particles in 
ider out orbits, lower the central halo density, and increase the
articles velocities, forming a ‘hot core’. 
Core expansion is maximized at a time of around t c = 25 t 0 (Koda &

hapiro 2011 ), with t 0 being 

 

−1 
0 = 

σT /m χ

2 

√ 

GM 

3 
200 c 

r 7 s 

, (12) 

here r s is the halo scale radius and M 200 c its mass. For a constant
ross-section of 10 cm 

2 g −1 , t c is around ∼12.7 Gyr for 10 11 M �
aloes, ∼18.6 Gyr for 10 10 M � haloes, and ∼28.5 Gyr for 10 9 M �
aloes. 
The top right-hand panel of Fig. 4 compares the z = 0 density

rofile of 10 11 M � haloes from different SIDM models. It can be seen
hat the SigmaVel models do not include haloes with central cores as
arge as the SigmaConstant10 model. This is because the velocity- 
ependent models have lower cross-sections than 10 cm 

2 g −1 at this
ass scale. Therefore, these haloes are still in the process of core

xpansion. 
The bottom panels of Fig. 4 compare the z = 0 density profile

f satellite haloes. At fixed radius satellite haloes exhibit higher 
ensities than central haloes of the same mass. Because of this,
atellite haloes are expected to host larger rates of DM particles
nteractions. Interesting to note that the bottom panels show a larger
catter around the median densities profiles of satellites than in the
ame-mass centrals. 

.3 Subhalo rotation cur v es 

ne of the most challenging discrepancies between cosmological 
imulations and observations is the diversity of the inner dark-matter 
ontent in dwarf galaxies (see e.g. Sales, Wetzel & Fattahi 2022 for
MNRAS 517, 3045–3063 (2022) 
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Figure 4. Density profile of central (top panels) and satellite (bottom panels) haloes from the CDM (orange lines), SigmaConstant10 (red lines), SigmaVel20 
(light blue lines), SigmaVel60 (dark blue lines), and SigmaVel100 (green lines) models. The panels show the density profiles of 10 9 M � (left-hand panels), 
10 10 M � (middle panels), and 10 11 M � (right-hand panels) haloes. The solid lines highlight the median values and the shaded regions the 16–84th percentiles. 
The black solid line in the top panels corresponds to the NFW profile, the green dash–dotted lines indicate the convergence radius (see the text for definition) 
and the grey-dashed lines the softening scale. The difference in the profiles between same-mass haloes highlights the impact of dark matter particle interactions 
in the haloes densities. 
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 recent re vie w). Observ ations of rotation curves of dwarf galaxies
eveal significant diversity in their shapes (Oman et al. 2015 ). While
any dwarf galaxies’ rotation curves rise slowly towards the galax-

es’ outskirts, indicative of cored DM density profiles, others rise
apidly, indicative of cuspy profiles. To date, CDM hydrodynamical
imulations with baryonic feedback processes from star formation
nd supernova explosions produce gravitational fluctuations. These
uctuations drive the redistribution of dark matter, and the formation
f flat density cores (e.g. Go v ernato et al. 2010 , 2012 ; Di Cintio et al.
014 ; Tollet et al. 2016 ; Read et al. 2016 ; Santos-Santos et al. 2018 ).
o we ver, this scenario does not seem to fully explain the observed
iversity in gas-rich dwarf galaxies (Santos-Santos et al. 2020 ), and
t fails to explain the diversity recently found in gas-poor systems,
uch as the dwarf spheroidal galaxies and ultra-faint satellite galaxies
f the Milky Way (e.g. Hayashi et al. 2022 , 2021 ). 
This work aims to investigate whether SIDM increases the diver-

ity in low-mass haloes hosting dwarf galaxies, and whether SIDM
s able to fully explain the diversity in low-mass gas-poor systems.
o analyse the evolution of such systems in our simulations, we
ocus in the lowest mass haloes we can confidently resolve. The
ower mass range for this is 10 9 –10 9 . 5 M �. Moreo v er, we specifically
nalyse satellite haloes, also refereed as subhaloes, since these would
aturally host gas-poor galaxies. We select 30 random satellites
aloes in the mass range of 10 9 . 5 −9 . 6 M � from the CDM and SIDM
NRAS 517, 3045–3063 (2022) 
imulations, and calculate their spherical circular velocity curves,
 

2 
circ ( r) = GM( < r) /r , where r is the 3D radius and M ( < r ) is the

otal mass enclosed within such radius. The goal of this section is to
rst produce a visual representation of the velocity profiles from low-
ass haloes from the various models. In order to understand whether
odels with a velocity-dependent cross-section can produce a diverse

ample of rotation curves in same-mass haloes. Throughout this
ork, we focus in the evolution of satellite haloes, but in Appendix C ,
e extend the analysis for centrals. 
Fig. 5 shows the circular velocity profiles of 30 randomly se-

ected satellite haloes from the CDM (top-left), SigmaConstant1
top-middle), SigmaConstant10 (top-right), SigmaVel20 (bottom-
eft), SigmaVel60 (bottom-middle), and SigmaVel100 (bottom-right)
odels in the mass range of 10 9 . 5 −9 . 6 M �. The various colour lines

orrespond to the profiles of the indi vidual haloes. This allo ws for
 comparison of the spread in the haloes circular velocities between
he models, as well as for a visual inspection on the shapes. The
lack dashed line in the panels highlights a 2 kpc fiducial radius,
hereas the grey-shaded region indicates where the rotation curves

re not fully resolved (below the convergence radius). We find that
hile the SigmaConstant10 model exhibits cored profiles without a

ignificant scatter in the circular velocities at 2 kpc, the SigmaVel100
odel shows the highest spread, counting with both very cuspy and

ery cored profiles. 
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Figure 5. Circular velocity profiles of satellite haloes selected randomly in the mass range 10 9 . 5 −9 . 6 M �. The various colour lines show the profiles on the 
individual haloes, and each panel shows the ‘spread’ in the haloes circular velocities from the CDM (top-left), SigmaConstant1 (top-middle), SigmaConstant10 
(top-right), SigmaVel20 (bottom-left), SigmaVel60 (bottom-middle), and SigmaVel100 (bottom-right) models. The grey-shaded region indicates where the 
rotation curves are not fully resolved (below the convergence radius). 
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Figure 6. Scatter of the satellite haloes circular velocity as a function of 
halo mass. The curves correspond to the standard deviation of V circ ( r fid ) = 

V fid (circular velocity at the fiducial radius, defined in equation 13 ). The 
various colour lines show the scatter of V fid for satellite haloes in the CDM 

(dark blue line), SigmaConstant10 (green line), SigmaVel20 (light-blue line), 
SigmaVel60 (orange line), and SigmaVel100 (red line) models. The shaded 
regions indicate the poison error in the scatter. The top panel shows the scatter 
as a function of halo mass, whereas the bottom shows the ratio between scatter 
from the SIDM models (SigmaConstant10, SigmaV el20, SigmaV el60, and 
SigmaVel100) and the CDM model. Each line highlights the respective model 
following the legends from the top panel. The grey numbers in the bottom 

panel indicates the number of satellites (averaged over all simulations). 
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For a better comparison of the haloes rotational curves between 
he models, we define a fiducial radius, r fid , as 

 fid = 2 × ( M/ 10 9 M �) 0 . 2 kpc , (13) 

here M = M 200 c for central haloes and M = M peak for satellites. We
alculated r fid by estimating the radius (as a function of halo mass)
t which the circular velocity was maximum. We did this assuming
he NFW density profile and the concentration–mass relation from 

orrea et al. ( 2015 ). In this manner, the normalization and slope of
he relation were chosen so that r fid = 2 kpc for 10 9 M � haloes,
nd it reaches 5 kpc for 10 11 M � haloes. V circ ( r fid ) largely coincides
ith the maximum circular velocity of the cuspy haloes in the SIDM
odels. 
We next define V circ ( r fid ) = V fid and quantify the scatter around

 fid for the different models as a function of halo mass. The top
anel of Fig. 6 shows the standard deviation in V fid from satellite
aloes as a function of halo mass. The various colour lines show
he scatter for satellite haloes in the CDM and SIDM models as
ndicated in the legend. We find that the mean DM circular velocity
at r fid = 2.6 kpc) from 10 9 . 5 M � CDM satellite haloes is ∼29 km s −1 

ith a 1 σ scatter of 5.5 km s −1 . The scatter increases to 5.8, 7,
nd 7.2 km s −1 in the SigmaV el20, SigmaV el60, and SigmaV el100
odels, respectively. The bottom panel of Fig. 6 shows the ratio 

etween the scatter in the SIDM models and the CDM model 
or better comparison. It can be seen that the SigmaVel60 and 
igmaVel100 models display the largest scatter in the satellite mass 
ange of 10 9 –10 10 M �, it increases by a factor of 1.2 and 1.3 relative to
DM. SigmaConstant10 shows a somewhat similar scatter as CDM 

n 10 9 M � haloes, but the scatter increases with halo mass. As a result
igmaConstant10 produces up to a factor of 2 larger scatter than 
DM in 10 11 M � satellite haloes. Interestingly, the figure shows that 

n the velocity-dependent cross-section models, the higher σ T / m χ at 
MNRAS 517, 3045–3063 (2022) 
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warf galaxies scales, the larger the scatter in V fid . This, ho we ver, is
ound when analysing the rotation curves of satellites. To highlight
he statistical significance of this scatter, the shaded regions in the
anels show the poison error in the scatter, and the bottom panel of
ig. 6 indicates the average number of haloes in the various mass 
ins. 
The top panel of Fig. 6 shows that the scatter around V fid tends

o increase with halo mass, as shown by the CDM model. Self-
nteracting dark matter increases the scatter because the collisions
eat the particles’ orbit, modifying the inner matter distribution. The
igmaVel60 model shows a higher scatter than SigmaConstant10

n subhaloes with M peak < 10 10 M �, this is because the cross-
ection of this model is higher than 10 cm 

2 g −1 in this mass range
see Fig. 1 ). In a given model, a large cross-section gives a higher
robability of particle-particle collisions (equation 5 ), which in turn
ncreases the scatter. In the SigmaVel60 model, because the cross-
ection is velocity dependent, it decreases to less than 10 cm 

2 g −1 

n subhaloes with M peak > 10 10 M �. Therefore, the scatter of this
odel is lower than of the SigmaConstant10 in the high-mass

aloes. 
The SigmaVel100 model roughly matches the scatter of Sigma-

onstant10 in subhaloes with M peak = 10 10 −10.4 M �, but similar to
igmaV el60, the SigmaV el100 model sho ws a lo wer scatter than
igmaConstant10 in subhaloes with M peak > 10 10.5 M �. Differently,

he scatter of the SigmaConstant10 model keeps increasing with halo
ass. This is because in this model the cross-section is constant.
herefore, the higher the halo mass, the higher the central density,

he larger the number of collisions, which in turn modify the haloes
nner matter distribution. In the other models, despite the central
ensity increasing with halo mass, the cross-section decreases. With
ields lower number of particle–particle collision in the high-mass
aloes. 
In all velocity-dependent SIDM models the cross-section is very

imilar in subhaloes with M peak > 10 10.5 M �. For example, Fig. 1
hows that for a 10 11 M � halo, the cross-section in the SigmaVel100
odel is roughly 5 cm 

2 g −1 , 3 cm 

2 g −1 in the SigmaVel60 model, and
.5 cm 

2 g −1 in the SigmaVel20 model. At fixed halo mass, in SIDM
odels where the cross-section is roughly similar, so is the number

f particle–particle collisions. This produces a similar scatter among
he velocity-dependent models. 

The increase in the 1 σ scatter around V fid from 10 9 to 10 10 M �
atellites is not significant when comparing CDM with SigmaVel100.
o we ver, what largely increases is the number of satellites that
ave V fid that are ±2 σ away from the V fid CDM average. In the
igmaConstant1 and SigmaConstant10 models 4 and 6 per cent ,
espectively, of the satellite population in the 10 9 . 5 −9 . 6 M � mass
ange, have V fid that are ±2 σ away from the CDM average. The
umber of 2 σ outliers increases to 12, 22, and 24 per cent in the
igmaV el20, SigmaV el60, and SigmaV el100 models, respectively.
e continue with an analysis of the distribution of V fid outliers in the

ollowing subsection. 
Finally, we have analysed the stability of the estimated scatter

hown in Fig. 6 given that r fid is somewhat close to the convergence
adius. We recalculated the fiducial circular velocity ( V circ ( r =
 fid )) by multiplying the fiducial radius by 0.8 and 1.2 ( V circ ( r =
.8 × r fid ) and V circ ( r = 1.2 × r fid )). These yield r fid = 2.01 kpc
nd r fid = 3.02 kpc, respectively, for the ∼10 9.5 M � subhaloes.
e have found the 1 σ scatter to be quite stable, changing from

.2 to 7.5 km s −1 in the SigmaVel100 model for r = 0.8 × r fid 

n ∼10 9.5 M � subhaloes, and changing from 7.2 to 6.7 km s −1 

n the SigmaVel100 model for r = 1.2 × r fid in ∼10 9.5 M �
ubhaloes. 
NRAS 517, 3045–3063 (2022) 
.3.1 Diversity 

n this section, we further assess the diversity of the rotation curves
rom the satellite population. We separate the CDM halo sample in
alo mass bins of 0.1 dex, and calculate the median circular velocities
t the fiducial radius (defined in equation 13 ) at each mass bin. We
efer to this median CDM fiducial velocity as V̄ fid −CDM 

. Finally, for
ach individual halo i from the different simulations we calculate
he ratio, ( V fid ,i − V̄ fid −CDM 

) / ̄V fid −CDM 

, where V̄ fid −CDM 

is the median
DM V fid from the mass bin the halo i is, and V fid, i is the circular
elocity at the fiducial radius of halo i . 

Fig. 7 shows the ratio, ( V fid − V̄ fid −CDM 

) / ̄V fid −CDM 

, as a function
f halo mass for the CDM (left-hand panel), SigmaConstant10
middle panel), and SigmaVel100 (right-hand panel) models. Each
ot in the figure is an individual satellite halo. Dots are coloured
ccording to the colour bar at the top of the figure that indicates the
aloes concentration. As expected, the scatter of the haloes circular
elocities strongly correlates with the haloes concentration, so that
ore concentrated haloes have steeply rising circular velocities.
his correlation not only appears in the CDM simulation but also

n the SIDM models. The dashed black lines in the panels of the
gure highlight the 97 and 3 percentiles of the distribution for
ach mass bin. Note that the haloes concentration, c 200 c , is the
oncentration at z = 0 and not at the time of M peak . We have decided
o use c 200 c at z = 0 because we want to capture the large change in
he satellite’s inner mass distribution that occurs when these haloes
ecome satellites, and start being affected by tidal interactions (as
hown by Nishikawa et al. 2020 ). 

The middle panel of Fig. 7 shows that the SigmaConstant10 model
as only very few satellites with steeply rising circular velocities (i.e.
ith velocity ratios larger than 0.3), but a large number of satellites
ith very low densities in the inner regions (i.e. with velocity ratios

ower than −0.5). We believe that some of these satellites have large
ores due to the SIDM interactions, but others have low densities due
o the e xcessiv e tidal disruption that there is in this model between
he satellites and their hosts. From the right-hand panel, we can see
hat satellites in the SigmaVel100 model have become very cuspy
with very step circular velocities) over the 10 9 − 10 10 M � halo
ass range, with velocity ratios larger than 0.5. These satellites are

otentially in gra v othermal core collapse. This figure clearly shows
hat a SIDM velocity-dependent model is able to increase the scatter
n the rotation curves from low-mass satellite haloes in dark matter-
nly simulations. Interestingly, the increased diversity of rotation
urves is not exclusive to satellite haloes, an increased scatter of
 V fid − V̄ fid −CDM 

) / ̄V fid −CDM 

for central haloes is also found in the
igmaVel100 model (see Appendix C ). 

.4 Gravothermal core-collapse 

n this section, we analyse the evolution of z = 0 satellite haloes
hat can potentially be in gra v othermal core collapse. We se-
ect satellites with masses between 10 9 and 10 9 . 5 M � and fol-
o w their e volution throughout the simulations outputs. We create
wo subsamples, a high-velocity ratio sample that has ( V fid −
¯
 fid −CDM 

) / ̄V fid −CDM 

> 0 . 3, and a low-velocity ratio sample where
 V fid − V̄ fid −CDM 

) / ̄V fid −CDM 

< −0 . 3, and investigate the evolution of
he median density profiles of the samples. 

Fig. 8 shows the satellite haloes’ median density profiles from
he CDM (left-hand panel), SigmaConstant10 (middle panel), and
igmaVel100 (right-hand panel) simulations, where the blue lines
orrespond to the high-ratio sample and the orange lines to the low-
atio sample. The median densities at redshift 0 are shown in solid
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Figure 7. Circular velocities at the fiducial radius, V fid , relative to the median V̄ fid from the CDM simulation. Each dot corresponds to a satellite halo, with a mass 
indicated by the x -axis, and with a concentration highlighted by the colour bar on the top of the figure. The panels show the ratio, ( V fid − V̄ fid −CDM 

) / ̄V fid −CDM 

, 
for the CDM (left), SigmaConstant10 (middle), and SigmaVel100 simulation (right). The figure indicates that if V fid > V̄ fid −CDM 

, a halo’s rotation curve becomes 
steeply rising, whereas if V fid < V̄ fid −CDM 

, the rotation curve is slowly rising. The colour bar highlights that the scatter of the haloes circular velocities strongly 
correlates with the halo concentrations, with more concentrated haloes having more steeply rising circular velocities. This correlation not only appears in the 
CDM simulation, but also in the SIDM models. While the middle panel does not show a large number of satellite haloes from the 10 9 to 10 11 M � mass range 
with steeply rising rotation curves, the right-hand panel shows a large spread in the velocity ratio. The dashed black lines in the panels highlight the 97 and 3 
percentiles of the distribution. 

Figure 8. Satellite haloes’ median density profiles from the CDM (left-hand panel), SigmaConstant10 (middle panel), and SigmaVel100 (right-hand panel) 
simulations. The blue lines, labelled ‘high-ratio’ sample, corresponds to satellite haloes in the mass range of 10 9 –10 9 . 5 M � that have velocity ratios, ( V fid −
V̄ fid −CDM 

) / ̄V fid −CDM 

, larger than 0.3. Similarly, the orange lines, labelled ‘low-ratio’ sample, corresponds to satellite haloes that have velocity ratios lower than 
−0.3. The different line types indicate different redshifts, with solid corresponding to median density profiles at redshift 0, dashed at redshift 0.5, dotted at 
redshift 1 and dash–dotted at redshift 2. In this manner, each panel shows the evolution in density of haloes that at z = 0 are satellites, have masses between 10 9 

and 10 9 . 5 M �, and have either high- or low-velocity ratios. In the panels, the grey-shaded area indicates the radial regime where the density profiles are below 

the convergence radius. 
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ines, at redshift 0.5 in dashed lines, at redshift 1 in dotted lines and
t redshift 2 in dash–dotted lines. In the panels, the grey-shaded area
ndicates the radial region where the density profiles are below the 
onvergence radius, and therefore, we warn the reader that at these 
adii our results are not numerically resolved. 

The left-hand panel of the figure compares the evolution of CDM
atellites haloes with low- and high-velocity ratios. We find that 
hile the low-ratio sample does not significantly evolve in density 

n the 0–2 redshift range, the high-ratio sample does. High-ratio 
atellites experience significant mass-loss, as can be seen from the 
ecrease in density at the ∼10 kpc radius. Note that this does not
ndicate that higher concentration haloes are more prone to tidal 
orces than their lower concentration counterparts. This occurs 
ecause the halo samples are selected based on their z = 0 virial
asses. The high-ratio sample is formed by more concentrated 

aloes. Because they are more concentrated, they have formed earlier 
 ut ha ve reached the same mass at z = 0 as the low-ratio halo sample.
or this to happen they should have lost more mass, which is what the
MNRAS 517, 3045–3063 (2022) 
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M

Figure 9. Same as Fig. 8 . Evolution of the median circular velocities of high ratio ( V fid − V̄ fid −CDM 

) / ̄V fid −CDM 

> 0 . 3) satellite haloes in the mass range of 
10 9 . 5 –10 9 . 6 M �. The evolution is shown for the CDM (left-hand panel), SigmaConstant10 (middle panel), and SigmaVel100 (right-hand panel) simulations. The 
coloured lines show the circular velocities at various redshift, as indicated in the legend. The shaded areas highlight the 16–84 per cent percentiles of the z = 0 
and z = 0.5 circular velocity curves. The panels show how the satellites in the SigmaConstant10 and SigmaVel100 develop a more steeply rising circular velocity 
at z = 0, indicative of haloes becoming more concentrated, with steeper density profiles (as shown in Fig. 8 ), and therefore entering in gra v othermal collapse. 
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eft-hand panel of Fig. 8 indicates. The middle and right-hand panels
f the figure show that the low-ratio sample largely decrease their
entral densities during the redshift range of 0–0.5. Since this feature
s absent in the CDM sample, we find it to be produced by the SIDM
nteractions. 

The evolution of the high-ratio satellite sample from the Sigma-
onstant10 and SigmaVel100 models shows that these satellites can
otentially be in gra v othermal core collapse. This can be seen by
ollowing the density evolution at ∼1 kpc radius in the middle and
ight-hand panels. The median profiles show that the density of the
ample decreases from z = 2 to z = 0.5, and then it begins to raise
gain. 

A more detailed evolution of the high-ratio halo sample is shown
n Fig. 9 , where the median circular velocities are plotted. For this
gure, we decrease the high-ratio satellite haloes mass range to
0 9 . 5 –10 9 . 6 M �, this is done to decrease the scatter in the dynamical
nner mass. As in Fig. 8 , the evolution is shown for the CDM (left-
and panel), SigmaConstant10 (middle panel), and SigmaVel100
right-hand panel) simulations with the coloured lines indicating the
ircular velocities at various redshifts (see legend). The panels show
ow the satellites in the SigmaConstant10 and SigmaVel100 develop
 more steeply rising circular velocity at z = 0, indicative of haloes
ecoming more concentrated, with steeper density profiles (as shown
n Fig. 8 ), and therefore entering in gra v othermal collapse. This is
ot seen in the CDM case. 
To better understand the effect of gra v othermal collapse, we plot

he evolution in the density at 1 kpc and at 150 pc, and the evolution
f the logarithmic density slope of the high-ratio sample in Fig. 10 .
e again expand the satellite sample to select haloes with masses

etween 10 9 and 10 9 . 5 M � that have ( V fid − V̄ fid −CDM 

) / ̄V fid −CDM 

>

 . 3, and plot the median values as a function of redshift. To calculate
he slope in the density profile, for each individual halo from the
ample, we fit the log 10 ρ( r ) − log 10 ( r ) relation (with r between 1 and
 kpc) using a linear function. The left-hand panel of Fig. 10 shows
he evolution of the logarithmic density slope of haloes from the
DM (blue line), SigmaConstant10 (red line), SigmaVel20 (orange),
igmaVel60 (green line), and SigmaVel100 (dark blue line) models.
he middle panel of the figure shows the median density at 1kpc, and
NRAS 517, 3045–3063 (2022) 

d  
he right-hand panel shows an extrapolation of the density at 150 pc
sing the linear fitting that estimated the density slope. 
It can be seen from the left-hand panel of Fig. 10 that the high-

atio sample from the CDM simulation forms a steep density profile
f roughly constant slope with decreasing redshift. The median
teepness of the z = 0 CDM profiles seems to match the slope of the
ensity profiles from the SigmaVel60 model. SigmaVel60, ho we ver,
hows a significant change in the evolution of the logarithmic density
lope, being around −1.4 at z = 1.5 and decreasing till −1.8 at z =
. SigmaVel100 shows a yet larger evolution in the haloes density,
hanging its median slope from ∼−1.4 at z = 0.5 to −2 and z =
. This evolution indicates a contraction of the core and an increase
n central density that tends to mostly occur in the redshift range of
–0.5. The SigmaVel100 model also shows an important evolution
n the haloes density, with the median slope decreasing from −1.4 at
 = 0.5 to −1.9 at z = 0. 

The middle panels of Fig. 10 show the evolution in density at
 kpc. From this panel, it cannot be seen a significant raise in density
rom the SigmaVel60 or SigmaVel100 samples. But we find that the
xtrapolation of the shape of the profiles indicates that the satellites
n the SigmaVel60 and SigmaVel100 model should largely increase
n density in the central regions ( ∼150 pc). In a future work (Correa
t al. in preparation), using a higher resolution set-up, we will further
xplore the evolution of satellites (as well as centrals), and analyse
nder which conditions (e.g. orbits, concentration, rate of mass
ain/loss, environment) haloes undergo gra v othermal core collapse. 

 DI SCUSSI ON  

.1 Caveats 

n this work, we have presented the first results of the TangoSIDM
ark matter-only simulation suite, a set of cosmological simulations
ith different SIDM models. One limitation of this study is the

esolution of the cosmological boxes. While we aim to explore and
nderstand the internal evolution of low-mass haloes, we are limited
o a minimum spatial resolution of 1 kpc (see Section 3.2 for a
iscussion on convergence radius). We have therefore analysed the

art/stac2830_f9.eps
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Figure 10. Evolution in the density slope (left-hand panel), and in density at 1kpc (middle panel) and at 150 pc (right-hand panel) of the high ratio sample 
of 10 9 –10 9 . 5 M � satellites. As indicated in the legends, each line shows the median evolution for the CDM, SigmaConstant10, SigmaV el20, SigmaV el60, and 
SigmaVel100 models. In the panels, the shaded areas highlight the 16–84 per cent percentiles. 
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ensity and rotation profiles on scales at or larger than 1 kpc, and we
ave shown that halo density profiles typically converge on scales 
own to half the softening (Fig. A3 and Section B1 ). 
The lack of baryonic physics is an important effect that can impact

ur results. For galaxies in low-mass haloes, supernova feedback 
s able to alter the internal DM distribution of haloes (Read &
ilmore 2005 ; Mashchenko, Wadsley & Couchman 2008 ; Pontzen & 

o v ernato 2012 ; Garrison-Kimmel et al. 2014 ; Di Cintio et al. 2014 ;
ollet et al. 2016 ). The energy injection from supernovae produces 
as outflows, leading to fluctuations of the nearby baryonic mass, that 
n turn modifies total gravitational potential within the inner DM halo. 
his causes a radial expansion of the orbits of the inner DM particles,
nd a result the formation of a core. While it has been shown that the
N-induced core formation is model-dependent (Ben ́ıtez-Llambay 
t al. 2019 ; Dutton et al. 2020 ), the process of gra v othermal core
ollapse is potentially not. Burger et al. ( 2022 ) has recently shown
hat for SIDM cross sections of at least 10 cm 

2 g −1 , the formation
f cuspy central DM densities from gra v othermal collapse occurs, 
rrespective of the star formation density threshold that controls the 
tar formation burstiness of the galaxy, and hence the rate of SN
xplosions. This indicates that SIDM velocity-dependent models 
hould still produce cuspy haloes and an increased diversity in the 
otational curv es, relativ e to CDM, ev en if baryonic feedback is
ncluded. In future work, ho we ver, we plan to analyse the impact of
aryonic physics on the SIDM halo evolution. 

.2 Gravothermal core-collapse in a cosmological set-up 

ev eral works hav e produced zoom-in simulations to study the 
henomenology of SIDM on galaxy scales (i.e. Vogelsberger et al. 
012 , 2016 , 2019 ; Zavala et al. 2013 , 2019 ; Robles et al. 2019 ; Nadler
t al. 2020 ; Sameie et al. 2020 ; Shen et al. 2021 ; Bhattacharyya
t al. 2022 ; Burger et al. 2022 ; Silverman et al. 2022 ). Ho we ver,
heir results can potentially depend on their specific set of initial 
onditions. This is because the rate of mass accretion, merger history,
ocal environment, as well as other factors such as dynamical friction, 
idal stripping and ram pressure, can alter the formation history of a
alaxy and inner structure of a DM halo. Is it therefore important to
tudy the SIDM effects in a cosmological set-up. 

In this work, we have shown that even in SIDM models where the
ross-section reaches 100 cm 

2 /g in 10 9 M � haloes, not all low-mass
aloes enter in gra v othermal core collapse, only a fraction. Merger
istory (e.g. Col ́ın et al. 2002 ; Dav ́e et al. 2001 ) and the impact of
ocal environment can prevent a halo to enter in core collapse. This
urther supports the idea that the diversity in the rotation curves of
warf galaxies can be a signature of velocity-dependent SIDM. 

 C O N C L U S I O N S  

n this work, we have presented the first results from the ‘Tantalizing
odels of Self-Interacting Dark Matter’ project. A cosmological 

imulation suite project that aims to investigate the impact of SIDM
n galaxies and DM haloes evolution. We have analysed DM- 
nly cosmological simulations and compared the classical CDM 

odel with SIDM models where the DM particles scattering cross- 
ection, σ T / m χ is constant, with σ T / m χ = 1 and 10 cm 

2 g −1 (called
igmaConstant1 and SigmaConstant10, respectively), or velocity- 
ependent, where σ T / m χ is lower than 10 cm 

2 g −1 in MW-mass
aloes but reaches 100, 60, or 20 cm 

2 g −1 in 10 9 M � haloes (these
odels are refereed as SigmaV el100, SigmaV el60, and SigmaV el20, 

espectively; see Fig. 1 ). 
Our SIDM implementation accurately models core formation in 

entral haloes (Fig. 4 ), it reaches numerical convergence (Fig. A3)
nd it produces density profiles in agreement with what has been
eported by previous studies (Fig. A4). 

We have shown that a typical central halo of 10 11 . 5 M � changes
orphology when we assume different SIDM models (Fig. 2 ). While

t follows an elliptical elongated shape in the CDM scenario, in SIDM
requent DM particle collisions isotropize the particles orbit, making 
t more spherical. This ho we ver, depends on the cross-section of the
odel, since it controls the rate of DM particles interactions. While

he SigmaVel60 and SigmaConstant10 produce a spherical looking 
alo, SigmaVel20 does not. We have found that the largest subhalo
estruction is produced in the SigmaConstant10 model in contrast to 
he velocity-dependent models (Fig. 3 ). 

We have focused on the evolution of satellites, and shown that
he velocity-dependent σ / m χ models produce a large diversity in the
ircular velocities of satellites haloes relative to CDM (Fig. 5 ). The
catter of the circular velocities at a fiducial radius increases with
ncreasing cross sections, with the SigmaVel100 model reaching 
 factor of 1.3 larger scatter than CDM (Fig. 6 ). We have fur-
her illustrated the increased diversity in rotation curves from the 
igmaVel100 model, by calculating the deviation of the circular 
elocity at the fiducial radius, relative to the median CDM value.
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he increasing number of cuspy and cored haloes is shown in Fig. 7 ,
here we have also compared with the SigmaConstant10 model. 
The large variation in the haloes internal structure is driven by

M particles collisions, causing in some haloes the formation of
xtended cores, whereas in others gra v othermal core collapse. Fig. 8
ho ws the e volution in density of cuspy and core satellite haloes.
e have found that very cuspy haloes are undergoing gra v othermal

ore collapse. These haloes are changing the shape of their density
istribution by becoming steeper with decreasing redshift (Fig. 10 ). 
An important moti v ation for this study is to understand whether

IDM can solve the so-called ‘cusp-core/diversity’ problem of CDM.
ur velocity-dependent SIDM models are able to produce DM haloes

hat are either cuspy or display a core, without the need of invoking
 bursty star-forming galaxy. The models from the TangoSIDM
roject, therefore, offer a promising explanation for the diversity
n the density and velocity profiles of observed dwarf galaxies. 
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PPENDI X  A :  SI DM  I MPLEMENTATI ON  

1 Scattering probability 

n the simulations dark matter particles represent a patch of the DM
eld in phase space, with their distributions in physical-space and 
elocity-space defined by the distribution function f ( r , v , t ), with
M = f ( r , v , t )d 3 r d 3 v the mass of dark matter in the volume d 3 r
entred on r , with velocity in the velocity-space element d 3 v centred
n v . 
In the presence of collisions, the distribution function evolves as 

Df ( r , v , t) 
Dt 

= �[ f , σ ] = � out − � in , (A1) 

here the ‘out’ term accounts for collisions in which a particle at
osition r and with velocity v scatters from another particle. 
We take the ansatz that the evolution of the coarse-grained 

istribution function ˆ f (the distribution function averaged over 
everal times the interparticle spacing) is a good representation of 
he evolution of the fine-grained distribution function f . Therefore, 
he solution to D 

ˆ f ( r , v , t) /D t = � [ ˆ f , σ ] is the same as the solution
or f . We next discretizate equation ( A1 ) assuming ˆ f is 

ˆ 
 ( r , v , t) = 

∑ 

i 

m i W ( | r − r i | ; h i ) δ
3 ( v − v i ) , (A2) 

here a delta-function form for the velocity distribution is used 
ince each simulation particle travels at only one speed. We treat
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Figure A1. Cubic spline kernel (left) for particles with smoothing lengths 
h = 3, 5, and 10 (and with kernel’s radius H = 5.47, 9.12, and 18.25, 
respectively). Convolution of kernels (right) from a pair of particles i and 
j with different smoothing lengths (see legend) as a function of separation 
distance. The right panel of the figure shows that particles that are closer to 
each other and whose kernels largely o v erlap hav e a higher probability of 
collision. This is because the probability P ij depends on the convolution of 
kernels (equation A9 ). 
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ach particle as being smoothed out in configuration space with a
moothing kernel W with smoothing length h i . 

To calculate the scatter probability we follow Rocha et al. ( 2013 ),
ho wrote the particle-based discretization Boltzmann equation and

nte grated o v er the patch of phase space inhabited by a single particle
f size δr p δv p as follows: 

∫ 
δr p 

d 3 r 
∫ 

δv p 

d 3 v 
D 

ˆ f 

Dt 
= (A3) 

 

δr p 

d 3 r 
∫ 

δv p 

d 3 v 

∫ 
d 3 v 1 

∫ 
d �

d σ

d �
| v − v 1 | 

×[ ˆ f ( r , v ′ , t) ˆ f ( r , v ′ 1 , t) − ˆ f ( r , v , t) ˆ f ( r , v 1 , t)] , (A4) 

here a particle with initial velocity v collides with a target particle
f initial velocity v 1 , the velocities after the collision are v 

′ 
and v ′ 1 . 

The ‘scattering in’ part of the equation is 

( p) = 

∫ 
δr p 

d 3 r 
∫ 

δv p 

d 3 v 

∫ 
d 3 v 1 

∫ 
d �

d σ

d �
| v − v 1 | 

× ˆ f ( r , v , t) ˆ f ( r , v 1 , t) , (A5) 

= 

∫ 
δr p 

d 3 r 
∫ 

δv p 

d 3 v 

∫ 
d 3 v 1 ( σ/m ) | v − v 1 | m 

−1 
p 

×
∑ 

j 

m j W ( | r − r j | ; h j ) δ
3 ( v − v j ) 

×
∑ 

q 

m q W ( | r − r q | ; h q ) δ
3 ( v − v q ) , (A6) 

here the m 

−1 
p addition is to calculate the scattering probability for a

ingle particle j = p . Doing the integration from equation ( A6 ) yields

( p) = 

∫ 
δr p 

d 3 r 
∫ 

d 3 v 1 ( σ/m ) | v p − v 1 | 

×
∑ 

q 

m q W ( | r − r p | ; h p ) W ( | r − r q | ; h q ) δ
3 ( v − v q ) , 

= 

∑ 

q 

m q ( σ/m ) | v p − v p | 

×
∫ 

δr p 

d 3 r W ( | r − r p | ; h p ) W ( | r − r q | ; h q ) , (A7) 

= 

∑ 

q 

m q ( σ/m ) | v p − v p | g pq . (A8) 

Using these last equations, we can define the probability of
articles i and j scattering as 

 ij = m j ( σ/m ) | v i − v j | g ij ( δr ij ) �t, (A9) 

here 

 ij ( δr ij ) = N 

∫ max ( h i ,h j ) 

0 
d 3 r ′ W ( | r ′ | , h i ) W ( | δr ij + r ′ | , h j ) , (A10) 

ith δr ij the distance between particles i and j , and N a normalization

actor that requires 
∫ max ( h i ,h j ) 

0 d 3 r ′ g ij ( r ′ ) = 1 (suggested by Dav ́e
t al. 2001 ). 

Other expressions to calculate the DM particles interactions have
lso been suggested. As an example, Robertson et al. ( 2017 ) argued
hat the simplest way to estimate the scattering rate from the particles
nclosed in the search region is for all neighbour particles to
ontribute equally to the probability of collision, independent of their
ocation within the search re gion. The y proposed that the probability
f two particles, i and j (separated by a distance less than h SI ) of
NRAS 517, 3045–3063 (2022) 
cattering within the next time step, � t , is given by 

 ij = 

σp | v i − v j | �t 
4 
3 πh 

3 
SI 

. (A11) 

The difference in our approach, relative to Robertson et al., is
hat the probability of particles colliding depends (1) on the particles
istance and (2) on the particles kernel. Particles that are closer
elative to each other have a higher probability of collision, and
articles whose kernels largely o v erlap also hav e a higher probability
f collision. This can be seen from Fig. A1 that shows the cubic spline
ernel for particles with smoothing lengths h = 3, 5, and 10 (left-
and panel), and the convolution of kernels as a function of separation
istance of a pair of particles i and j that have different smoothing
engths (right-hand panel). 

An important feature of the SIDM implementation is how it selects
he neighbouring particles for which the probability of scattering is
alculated. We do it by defining the search radius as the DM particle
moothing length h . The smoothing length is not fixed, instead it
s adapted according to the local DM density around the particles.
he smoothing length of each individual particle, h i , is calculated by

equiring 

∑ 

j 

W ( | r j − r i | ; h i ) = 

(
η

h i 

)3 

, (A12) 

hen summing around its neighbours. In equation ( A12 ), W is the
ernel (defined in the following section) and η a resolution parameter.
his method follows the classical SPH formulation (see e.g. Price
012 for a re vie w of the algorithm), and it has also been implemented
n SWIFT to model the evolution of the gas particles (Borrow et al.
022 ). 

1.1 Integration of double kernel 

he kernel adopted in SWIFT to calculate the DM particles’ density
ollows the spline kernel (Monaghan & Lattanzio 1985 ) defined as 

 ( x, h ) = 

16 

πH 

⎧ ⎨ 

⎩ 

1 / 2 − 3 x 2 + 3 x 3 x ≤ 1 / 2 , 
(1 − x) 3 1 / 2 < x ≤ 1 , 
0 x > 1 , 

here H = γ h is the kernel’s support radius and γ = 1.825742. 
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Figure A2. Comparison between the scatter rate profiles of Hernquist haloes 
obtained from the simulation outputs (coloured lines), and an analytic 
estimation (black dashed line). The top panel shows the scatter rate of a 
10 14 M � halo, with a scale radius of 225 kpc, and a constant cross-section of 
σ / m χ = 1 cm 

2 g −1 , whereas the bottom panel shows the scatter rate of 
a 10 10 M � halo, with a scale radius of 25 kpc, and a velocity-dependent 
cross-section that follows the SigmaVel100 model (see Table 1 for the model 
parameters). In the panels, the different simulations contain 64 3 (orange 
lines), 128 3 (light blue lines), and 256 3 (dark blue lines) particles, and they 
are therefore increasing in resolution. The softening lengths (matching the 
simulations colours) are highlighted with dashed lines. The figure shows that 
for a constant cross-section, or for a velocity-dependent cross-section, the 
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The numerical integral of the double kernel (equation A10 ) 
s computationally e xpensiv e, therefore we first do an analytical 
stimation of the function using the WolframAlpha online tool. 

Given two dark matter particles i and j separated by a distance r ,
e define the follo wing v ariables, H i = γ h i , H j = γ h j , x 1 = H i /2,
 2 = H j /2 − r , x 3 = H i , x 4 = H j − r , and find the following expression
or g ij , 

 ij ( r ) = 

(16 /π ) 2 N 

H 

3 
i H 

3 
j 

× ˆ g ij ( r ) , 

here ˆ g ij ( r) is 

ˆ  ij ( r) = 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

W 11 ( x 1 ) + W 21 ( x 2 ) − W 21 ( x 1 ) 
+ W 22 ( x 3 ) − W 22 ( x 2 ) , if x 1 ≤ x 2 ≤ x 3 ≤ x 4 , 

W 11 ( x 1 ) + W 21 ( x 2 ) − W 21 ( x 1 ) 
+ W 22 ( x 4 ) − W 22 ( x 2 ) , if x 1 ≤ x 2 ≤ x 4 ≤ x 3 , 

W 11 ( x 2 ) + W 12 ( x 1 ) − W 12 ( x 2 ) 
+ W 22 ( x 3 ) − W 22 ( x 1 ) , if x 2 ≤ x 1 ≤ x 3 ≤ x 4 , 

W 11 ( x 2 ) + W 12 ( x 4 ) − W 12 ( x 2 ) , if x 2 ≤ x 4 ≤ x 1 ≤ x 3 , 

W 11 ( x 1 ) + W 21 ( x 3 ) − W 21 ( x 1 ) , if x 1 ≤ x 3 ≤ x 2 ≤ x 4 . 

elow we show the expression for W 11 , 

 11 ( x) = 14 H 

3 
j [1 − 6( r/H j ) 

2 + 6( r/H J ) 
3 ] 

×(5 H 

3 
i − 18 H i x 

2 + 15 x 3 ) 

+ 45 H 

2 
j ( r/H j )[ −2 + 3 r/H j ] x(7 H 

3 
i − 28 H i x 

2 + 24 x 3 ) 

+ 9 H j ( −1 + 3 r/H j ) x 
2 (28 H 

3 
i − 120 H i x 

2 + 105 x 3 ) 

+ 105(2 H 

3 
i x 

3 − 9 H i x 
5 + 8 x 6 ) , (A13) 

 11 ( x) = 

0 . 00119048 × 4 πx 3 

H 

3 
j H 

3 
i 

w 11 ( x) . (A14) 

2 Model validation 

n this section, we test the scattering probability derived in Sec- 
ion A1 . To do so, we first generate a distribution of particles’
ositions and velocities that follow a Hernquist profile (Hernquist 
990 ), which is defined by its total mass, M tot , and a scale radius, a
at which the enclosed mass is M tot /4), as follows: 

( r ) = 

M tot 

2 π

a 

r ( r + a) 3 
. (A15) 

The 1D velocity dispersion profile for the Hernquist halo follows 
rom the Jeans equation as 

2 
1 D 

= 

GM tot 

12 a 

(
12 r( r + a) 3 

a 4 
ln 

(
r + a 

r 

)

− r 

r + a 

[
25 + 52 

( r 

a 

)
+ 42 

( r 

a 

)2 
+ 12 

( r 

a 

)3 
])

. (A16) 

We next run simulations for an isolated halo that follows a 
ernquist profile. The simulations are run for 1 Gyr, and count with
ifferent number of particles (and therefore different resolution), 
anging from 64 3 , 128 3 till 256 3 . For this test the algorithm deter-
ines the particles that collide and saves the ef fecti ve kicks, but we

isable the actual collisions and changes in the particles velocities, 
o that the halo maintains the same profile during its evolution. We
alculate the scattering rate of the simulations by determining the 
ocation of all the collisions, and binning them in logarithmically- 
paced radial bins. This is then divided by the average number of
articles that reside in the same radial bins to get the scattering rate
er particle. 
We compare the scattering rate from the simulation output with 
he analytic solution. For an isolated halo, the number of scattering
vents as a function of radius can be calculated as 

( r) = ρ( r) 
〈
( σT /m χ ) v pair 

〉
( r) , (A17) 

here ρ( r ) is the local DM density, and 〈 ( σ T / m χ ) v pair 〉 ( r ) is the
veraged of the momentum transfer cross-section times the relative 
elocity of DM particles. In the non-relativistic limit, the average 
f the cross-section time the velocity can be calculated assuming a
axwell–Boltzmann distribution function, 〈
( σT /m χ ) v pair 

〉
( r ) = 

1 

2 σ 3 
v ( r ) 

√ 

π

∫ 
( σT /m χ ) v 3 e −v 2 / 4 σ 2 

v ( r) d v, 

(A18) 

here σ v ( r ) is the local velocity dispersion. 
MNRAS 517, 3045–3063 (2022) 
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For a constant cross-section 
〈
( σT /m χ ) v pair 

〉
( r) =

 σ/m χ ) 
〈
v pair 

〉
( r) = ( σ/m χ ) / (4 / 

√ 

π) σ1 D 

( r). In this case the
cattering rate can be easily calculated from equations ( A15 ) and
 A16 ). In the velocity-dependent case, we calculate the integral
equation A18 ) where σ T / m χ depends on v according to equation ( 4 ).

Fig. A2 shows a comparison between the scatter profiles of
ernquist haloes obtained from the simulation outputs, and the

nalytic estimation given by equation ( A17 ). The top panel shows
he scatter rate of a 10 14 M � halo, with a scale radius of 225 kpc,
nd a constant cross-section of σ / m χ = 1 cm 

2 /g, whereas the bottom
anel shows the scatter rate of a 10 10 M � halo, with a scale radius
f 25 kpc, and a velocity-dependent cross-section that follows the
igmaVel100 model (see Table 1 for the model parameters). The
anels show the numerical convergence in the simulations scattering
ate, by comparing simulations with different number of particles,
anging from 64 3 (orange lines), 128 3 (light blue lines) till 256 3 

dark blue lines) particles. These simulation different resolution as
t is highlighted by the softening lengths (that match the simulations
olours) with dashed lines. We conclude from Fig. A2 that the
imulation outputs are able to reproduce the analytic estimates. The
op panel shows that the simulations smoothly follow the analytic
urve, whereas the bottom panel shows a some-what larger scatter
round the correct answer. This is due to the fact that in this model
he probability of scattering strongly depends on the particles relative
elocity, instead of only on the particles positions. 

PPENDIX  B:  M O D E L  VA LIDATION  

1 Numerical conv er gence 

n this section, we analyse the numerical convergence of the simula-
ions. We run simulations for an isolated halo that follows a Hernquist
rofile for 10 Gyr, and follow the evolution in the halo’s density
rofile. Differently from Section A2 , we allow the ef fecti ve collisions
o modify the particles velocities. We model a 10 14 M � halo with
 scale radius of 225 kpc, and assume a constant cross-section of
/ m χ = 1 cm 

2 g −1 . We run three simulation with different number
f particles, ranging from 64 3 , 128 3 till 256 3 , with gravitational
oftenings equal to 12, 8, and 4 kpc, respectively. Fig. B1 shows the
volution in the density profile of a Hernquist halo after 1, 2, 4, and 8
yr of evolution. The simulation that contains 64 3 particles is shown

s dotted lines, the one that has 128 3 particles is shown as dashed
NRAS 517, 3045–3063 (2022) 

igure B1. Analysis of the evolution of a 10 14 M � halo, with a scale radius of 2
imulations that contain 64 3 (shown as dotted lines), 128 3 (shown as dashed lines),
he evolution in the density profile of a Hernquist halo after 1, 2, 4, and 8 Gyr of e
esolution. 
ines, and the simulation with 256 3 particles is shown as solid lines.
rom the figure it can be seen that we achieve good convergence

n the evolution of an isolated halo as shown by simulations with
ifferent resolution. 

2 Comparison with previous works 

e compare the evolution in density and velocity dispersion of the
 = 256 3 simulation, with the evolution reported by Robertson
 2017 ). As shown in the previous section, we follow the evolution of
 10 14 M � Hernquist halo with a scale radius of 225 kpc. We assume
onstant scattering cross-section of σ / m χ = 1 cm 

2 g −1 . Fig. B2 shows
he evolution in density (left-hand panel) and velocity dispersion
right-hand panel) after 1 (orange line), 2 (red line), 4 (light blue
ine), and 8 (dark blue line) Gyrs. To compare with Robertson et al.
e use the cored-Hernquist profile defined as 

( r ) = 

M tot 

2 π

a 

( r β + r 
β
c ) 1 /β

1 

( r + a) 3 
, (B1) 

here r c is the core-radius and β a free parameters that controls
he transition in density from constant core to ρ ∝ 1/ r . Robertson
t al. model a Hernquist halo of same mass, scale radius, and similar
esolution. The y fix ed β = 4, and obtained a core radius of 12, 17,
2, and 30 kpc, after 1, 2, 4, and 8 Gyr respectively. 
The left-hand panel of Fig. B2 compares the density between

ur model (solid lines) and the best-fitting profile from Robertson
t al. (dashed lines). We find good agreement with Robertson et al.
uring the first 6 Gyr of evolution. At later times our model does not
roduce such a large halo core at the point of maximum expansion as
obertson et al. This is likely due to the different manner in which the
robability of DM particles interaction is calculated (see Section A1 ).
obertson et al. estimated r c running a 10 14 M � Hernquist halo in a
56 3 simulation, with 2 kpc gravitational softening and assumed
 fixed search radius (for the SIDM interactions) equal to the
ravitational softening length. 
Fischer et al. ( 2021 ) deri ved a ne w approach to model frequent

cattering based on an ef fecti v e drag force, which the y implemented
nto the N -body code GADGET -3 (an updated version of the N -
ody code GADGET -2, Springel 2005 ). Similar to this work, Fischer
t al. calculate a DM particle drag force based on a kernel function
epresenting the DM density distribution. In their comparison with
obertson et al., they also reported a smaller maximum core size,
25 kpc, and a constant cross-section of σ / m χ = 1 cm 

2 g −1 , produced with 
 and 256 3 (shown as solid lines) particles. From left to right, the panels show 

volution. We find good convergence between the simulations with different 

C
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Figure B2. Evolution in the density profile (left-hand panel) and velocity dispersion (right-hand panel) of a 10 14 M � Hernquist halo. The figure shows the 
evolution of the halo after 1 (orange line), 2 (red line), 4 (light blue line), and 8 (dark blue line) Gyr. The left-hand panel compares the evolution obtained from 

the 256 3 simulation, with the evolution reported by Robertson ( 2017 ) (dashed lines). We find good agreement with Robertson et al. during the first 6 Gyr of 
evolution. At later times our model does not produce such a large halo core at the point of maximum expansion as Robertson et al. 
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PPEN D IX  C :  DIVERSITY  IN  T H E  ROTAT I O N  

U RV E S  F RO M  C E N T R A L  H A L O E S  

his section extends the analysis presented in Section 3.3.1 for the 
ase of central haloes. Fig. C1 shows the velocity ratio, ( V fid −
¯
 fid −CDM 

) / ̄V fid −CDM 

, as a function of halo mass. As in Section 3.3.1 ,
he fiducial velocity V fid is calculated for each individual central 
alo i , and then related to V̄ fid −CDM 

, defined as the median CDM
igure C1. Same as Fig. 7 , but for central haloes. Circular velocities at the fiducia
orresponds to a central halo, with a mass indicated by the x -axis, and with a conc
how the ratio, ( V fid − V̄ fid −CDM 

) / ̄V fid −CDM 

, for the CDM (left), SigmaConstant10 
anels highlight the 97 and 3 percentiles of the distribution. The figure indicates tha
entral haloes, relative to CDM. 

his paper has been typeset from a T E 

X/L 

A T E 

X file prepared by the author. 
 fid from the mass bin the halo i is. Fig. C1 depicts the relation for
he CDM (left-hand panel), SigmaConstant10 (middle panel), and 
igmaVel100 (right-hand panel) models. By comparing the panels, 

t can be seen that the SigmaVel100 model shows a larger number
f outliers with ( V fid − V̄ fid −CDM 

) / ̄V fid −CDM 

> 0 . 3 (as well as with
 V fid − V̄ fid −CDM 

) / ̄V fid −CDM 

< −0 . 3) relative to CDM. 
MNRAS 517, 3045–3063 (2022) 

l radius, V fid , relative to the median V̄ fid from the CDM simulation. Each dot 
entration highlighted by the colour bar on the top of the figure. The panels 
(middle), and SigmaVel100 simulation (right). The dashed black lines in the 
t the SigmaVel100 model contains a larger scatter in the velocity ratios from 
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