171 research outputs found

    Nitrates in drinking water and methemoglobin levels in pregnancy: a longitudinal study

    Get PDF
    This is the final version of the article. Available from BioMed Central via the DOI in this record.BACKGROUND: Private water systems are more likely to have nitrate levels above the maximum contaminant level (MCL). Pregnant women are considered vulnerable to the effects of exposure to high levels of nitrates in drinking water due to their altered physiological states. The level of methemoglobin in the blood is the biomarker often used in research for assessing exposure to nitrates. The objective of this study was to assess methemoglobin levels and examine how various factors affected methemoglobin levels during pregnancy. We also examined whether differences in water use practices existed among pregnant women based on household drinking water source of private vs. public supply. METHODS: A longitudinal study of 357 pregnant women was conducted. Longitudinal regression models were used to examine changes and predictors of the change in methemoglobin levels over the period of gestation. RESULTS: Pregnant women showed a decrease in methemoglobin levels with increasing gestation although <1% had levels above the physiologic normal of 2% methemoglobin, regardless of the source of their drinking water. The multivariable analyses did not show a statistically significant association between methemoglobin levels and the estimated nitrate intake from tap water among pregnant women around 36 weeks gestation (β = 0.046, p = 0.986). Four women had tap water nitrate levels above the MCL of 10 mg/L. At enrollment, a greater proportion of women who reported using water treatment devices were private wells users (66%) compared to public system users (46%) (p < 0.0001). Also, a greater proportion of private well users (27%) compared to public system users (13%) were using devices capable of removing nitrate from water (p < 0.0001). CONCLUSION: Pregnant women potentially exposed to nitrate levels primarily below the MCL for drinking water were unlikely to show methemoglobin levels above the physiologic normal. Water use practices such as the use of treatment devices to remove nitrates varied according to water source and should be considered in the assessment of exposure to nitrates in future studies

    TRPM7 Provides an Ion Channel Mechanism for Cellular Entry of Trace Metal Ions

    Get PDF
    Trace metal ions such as Zn2+, Fe2+, Cu2+, Mn2+, and Co2+ are required cofactors for many essential cellular enzymes, yet little is known about the mechanisms through which they enter into cells. We have shown previously that the widely expressed ion channel TRPM7 (LTRPC7, ChaK1, TRP-PLIK) functions as a Ca2+- and Mg2+-permeable cation channel, whose activity is regulated by intracellular Mg2+ and Mg2+·ATP and have designated native TRPM7-mediated currents as magnesium-nucleotide–regulated metal ion currents (MagNuM). Here we report that heterologously overexpressed TRPM7 in HEK-293 cells conducts a range of essential and toxic divalent metal ions with strong preference for Zn2+ and Ni2+, which both permeate TRPM7 up to four times better than Ca2+. Similarly, native MagNuM currents are also able to support Zn2+ entry. Furthermore, TRPM7 allows other essential metals such as Mn2+ and Co2+ to permeate, and permits significant entry of nonphysiologic or toxic metals such as Cd2+, Ba2+, and Sr2+. Equimolar replacement studies substituting 10 mM Ca2+ with the respective divalent ions reveal a unique permeation profile for TRPM7 with a permeability sequence of Zn2+ ≈ Ni2+ >> Ba2+ > Co2+ > Mg2+ ≥ Mn2+ ≥ Sr2+ ≥ Cd2+ ≥ Ca2+, while trivalent ions such as La3+ and Gd3+ are not measurably permeable. With the exception of Mg2+, which exerts strong negative feedback from the intracellular side of the pore, this sequence is faithfully maintained when isotonic solutions of these divalent cations are used. Fura-2 quenching experiments with Mn2+, Co2+, or Ni2+ suggest that these can be transported by TRPM7 in the presence of physiological levels of Ca2+ and Mg2+, suggesting that TRPM7 represents a novel ion-channel mechanism for cellular metal ion entry into vertebrate cells

    IP(3) receptor subtype-dependent activation of store-operated calcium entry through I(CRAC).

    Get PDF
    The store-operated, calcium release-activated calcium current I(CRAC) is activated by the depletion of inositol 1,4,5-trisphosphate (IP(3))-sensitive stores. The significantly different dose-response relationships of IP(3)-mediated Ca(2+) release and CRAC channel activation indicate that I(CRAC) is activated by a functionally, and possibly physically, distinct sub-compartment of the endoplasmic reticulum (ER), the so-called CRAC store. Vertebrate genomes contain three IP(3) receptor (IP(3)R) genes and most cells express at least two subtypes, but the functional relevance of various IP(3)R subtypes with respect to store-operated Ca(2+) entry is completely unknown. We here demonstrate in avian B cells (chicken DT40) that IP(3)R type II and type III participate in IP(3)-induced activation of I(CRAC), but IP(3)R type I does not. This suggests that the expression pattern of IP(3)R contributes to the formation of specialized CRAC stores in B cells

    Aldosterone signaling through transient receptor potential melastatin 7 cation channel (TRPM7) and its α-kinase domain

    Get PDF
    We demonstrated a role for the Mg2 + transporter TRPM7, a bifunctional protein with channel and α-kinase domains, in aldosterone signaling. Molecular mechanisms underlying this are elusive. Here we investigated the function of TRPM7 and its α-kinase domain on Mg2 + and pro-inflammatory signaling by aldosterone. Kidney cells (HEK-293) expressing wild-type human TRPM7 (WThTRPM7) or constructs in which the α-kinase domain was deleted (ΔKinase) or rendered inactive with a point mutation in the ATP binding site of the α-kinase domain (K1648R) were studied. Aldosterone rapidly increased [Mg2 +]i and stimulated NADPH oxidase-derived generation of reactive oxygen species (ROS) in WT hTRPM7 and TRPM7 kinase dead mutant cells. Translocation of annexin-1 and calpain-II and spectrin cleavage (calpain target) were increased by aldosterone in WT hTRPM7 cells but not in α-kinase-deficient cells. Aldosterone stimulated phosphorylation of MAP kinases and increased expression of pro-inflammatory mediators ICAM-1, Cox-2 and PAI-1 in Δkinase and K1648R cells, effects that were inhibited by eplerenone (mineralocorticoid receptor (MR) blocker). 2-APB, a TRPM7 channel inhibitor, abrogated aldosterone-induced Mg2 + responses in WT hTRPM7 and mutant cells. In 2-APB-treated ΔKinase and K1648R cells, aldosterone-stimulated inflammatory responses were unchanged. These data indicate that aldosterone stimulates Mg2 + influx and ROS production in a TRPM7-sensitive, kinase-insensitive manner, whereas activation of annexin-1 requires the TRPM7 kinase domain. Moreover TRPM7 α-kinase modulates inflammatory signaling by aldosterone in a TRPM7 channel/Mg2 +-independent manner. Our findings identify novel mechanisms for non-genomic actions of aldosterone involving differential signaling through MR-activated TRPM7 channel and α-kinase

    Free Sugars and Total Fat Are Important Characteristics of a Dietary Pattern Associated with Adiposity across Childhood and Adolescence

    Get PDF
    Background The importance of dietary sugar versus fat in the development of obesity is currently a topic of debate. Objective We aimed to identify dietary patterns (DPs) characterized by high sugar and/or high fat content and their longitudinal associations with adiposity during childhood and adolescence. Methods Participants were 6722 children from the Avon Longitudinal Study of Parents and Children (born 1991-92). DPs were characterized by % total energy intake (%E) from free sugars, %E from total fat, dietary energy density (DED) and fiber density, using reduced rank regression at 7, 10 and 13 years of age. Total body fat mass was measured at 11, 13 and 15 years of age. Regression analyses adjusted for dietary misreporting, physical activity and maternal class. Results Two major DPs were identified: higher z scores for DP1 were associated with greater DED, %E from sugars and fat, and lower fiber density; higher z scores for DP2 were associated with greater %E from sugars but lower %E from fat and DED. A 1 SD increase in z score for DP1 was associated with a mean increase in fat mass index z score of 0.04 SD units (95%CI 0.01, 0.07; P=0.017) and greater odds of excess adiposity (OR:1.12, 95%CI: 1.0, 1.25; P=0.038). DP2 was not associated with adiposity. Conclusions An energy-dense DP high in %E from fat and sugars is associated with greater adiposity in childhood and adolescence. This confirms the role of both fat and sugar and provides a basis for food based dietary guidelines to prevent obesity in children.</p

    Mrs2p Forms a High Conductance Mg2+ Selective Channel in Mitochondria

    Get PDF
    Members of the CorA-Mrs2-Alr1 superfamily of Mg2+ transporters are ubiquitous among pro- and eukaryotes. The crystal structure of a bacterial CorA protein has recently been solved, but the mode of ion transport of this protein family remained obscure. Using single channel patch clamping we unequivocally show here that the mitochondrial Mrs2 protein forms a Mg2+-selective channel of high conductance (155 pS). It has an open probability of ∼60% in the absence of Mg2+ at the matrix site, which decreases to ∼20% in its presence. With a lower conductance (∼45 pS) the Mrs2 channel is also permeable for Ni2+, whereas no permeability has been observed for either Ca2+, Mn2+, or Co2+. Mutational changes in key domains of Mrs2p are shown either to abolish its Mg2+ transport or to change its characteristics toward more open and partly deregulated states. We conclude that Mrs2p forms a high conductance Mg2+ selective channel that controls Mg2+ influx into mitochondria by an intrinsic negative feedback mechanism

    The Stature of Boys Is Inversely Correlated to the Levels of Their Sertoli Cell Hormones: Do the Testes Restrain the Maturation of Boys?

    Get PDF
    The testes of preadolescent boys appear to be dormant, as they produce only trace levels of testosterone [1]. However, they release supra-adult levels of Müllerian Inhibiting Substance (MIS, anti-Müllerian hormone) and lesser levels of inhibin B (InhB), for unknown reasons [2], [3]. Boys have a variable rate of maturation, which on average is slower than girls. The height of children relative to their parents is an index of their maturity [4], [5]. We report here that a boy's level of MIS and InhB is stable over time and negatively correlates with his height and his height relative to his parent's height. This suggests that boy's with high levels of MIS and InhB are short because they are immature, rather than because they are destined to be short men. The levels of MIS and InhB in the boys did not correlate with known hormonal modulators of growth, and were additive with age and the growth hormone/IGF1 axis as predictors of a boy's height. If MIS and InhB were causal regulators of maturity, then the inter-boy differences in the levels of these hormone produces variation in maturation equivalent to 18-months of development. MIS and InhB may thus account for most of the variation in the rate of male development. If boys lacked these hormones, then an average 5-year-old boy would be over 5 cm taller than age-matched girls, making boys almost as dimorphic as men, for height. This indicates that boys have a high growth potential that is initially suppressed by their testes. The concept of the childhood testes suppressing an adult male feature appears paradoxical. However, the growth of children requires intergenerational transfer of nutrients. Consequently, the MIS/InhB slowing of male growth may have been historically advantageous, as it would minimizes any sex bias in the maternal cost of early child rearing

    A Review of Events That Expose Children to Elemental Mercury in the United States

    Get PDF
    Concern for children exposed to elemental mercury prompted the Agency for Toxic Substances and Disease Registry and the Centers for Disease Control and Prevention to review the sources of elemental mercury exposures in children, describe the location and proportion of children affected, and make recommendations on how to prevent these exposures. In this review, we excluded mercury exposures from coal-burning facilities, dental amalgams, fish consumption, medical waste incinerators, or thimerosal-containing vaccines. We reviewed federal, state, and regional programs with data on mercury releases along with published reports of children exposed to elemental mercury in the United States. We selected all mercury-related events that were documented to expose (or potentially expose) children. Primary exposure locations were at home, at school, and at others such as industrial property not adequately remediated or medical facilities. Exposure to small spills from broken thermometers was the most common scenario; however, reports of such exposures are declining. The information reviewed suggests that most releases do not lead to demonstrable harm if the exposure period is short and the mercury is properly cleaned up. Primary prevention should include health education and policy initiatives

    Maternal and offspring intelligence in relation to BMI across childhood and adolescence

    Get PDF
    Objective: The present study tested the association between both mothers’ and offspring’s intelligence and offspring’s body mass index (BMI) in youth. Method: Participants were members of the National Longitudinal Survey of Youth 1979 (NLSY-79) Children and Young Adults cohort (n = 11,512) and their biological mothers who were members of the NLSY-79 (n = 4932). Offspring’s IQ was measured with the Peabody Individual Achievement Test (PIAT). Mothers’ IQ was measured with the Armed Forces Qualification Test (AFQT). A series of regression analyses tested the association between IQ and offspring’s BMI by age group, while adjusting for pre-pregnancy BMI and family SES. The analyses were stratified by sex and ethnicity (non-Black and non-Hispanic, Black, and Hispanic). Results: The following associations were observed in the fully adjusted analyses. For the non-Blacks and non-Hispanics, a SD increment in mothers’ IQ was negatively associated with daughters’ BMI across all age-groups, ranging from β = −0.12 (95% CI −0.22 to −0.02, p = 0.021) in late childhood, to β = −0.17 (95% C.I. −0.27 to −0.07, p = 0001), in early adolescence and a SD increment in boys’ IQ was positively associated with their BMI in early adolescence β = 0.09 (95% CI 0.01–0.18, p = 0.031). For Blacks, there was a non-linear relationship between mothers’ IQ and daughters’ BMI across childhood and between girls’ IQ and BMI across adolescence. There was a positive association between mothers’ IQ and sons’ BMI in early adolescence (β = 0.17, 95% CI 0.02–0.32, p = 0.030). For Hispanic boys, there was a positive IQ-BMI association in late childhood (β = 0.19, 95% CI 0.05–0.33, p = 0.008) and early adolescence (β = 0.17, 95% CI 0.04–0.31, p = 0.014). Conclusion: Mothers’ IQ and offspring’s IQ were associated with offspring’s BMI. The relationships varied in direction and strength across ethnicity, age group and sex. Obesity interventions may benefit from acknowledging the heterogeneous influence that intelligence has on childhood BMI

    Human Tumor Cell Proliferation Evaluated Using Manganese-Enhanced MRI

    Get PDF
    Tumor cell proliferation can depend on calcium entry across the cell membrane. As a first step toward the development of a non-invasive test of the extent of tumor cell proliferation in vivo, we tested the hypothesis that tumor cell uptake of a calcium surrogate, Mn(2+) [measured with manganese-enhanced MRI (MEMRI)], is linked to proliferation rate in vitro.Proliferation rates were determined in vitro in three different human tumor cell lines: C918 and OCM-1 human uveal melanomas and PC-3 prostate carcinoma. Cells growing at different average proliferation rates were exposed to 1 mM MnCl(2) for one hour and then thoroughly washed. MEMRI R(1) values (longitudinal relaxation rates), which have a positive linear relationship with Mn(2+) concentration, were then determined from cell pellets. Cell cycle distributions were determined using propidium iodide staining and flow cytometry. All three lines showed Mn(2+)-induced increases in R(1) compared to cells not exposed to Mn(2+). C918 and PC-3 cells each showed a significant, positive correlation between MEMRI R(1) values and proliferation rate (p≤0.005), while OCM-1 cells showed no significant correlation. Preliminary, general modeling of these positive relationships suggested that pellet R(1) for the PC-3 cells, but not for the C918 cells, could be adequately described by simply accounting for changes in the distribution of the cell cycle-dependent subpopulations in the pellet.These data clearly demonstrate the tumor-cell dependent nature of the relationship between proliferation and calcium influx, and underscore the usefulness of MEMRI as a non-invasive method for investigating this link. MEMRI is applicable to study tumors in vivo, and the present results raise the possibility of evaluating proliferation parameters of some tumor types in vivo using MEMRI
    corecore