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Abstract

Background: The importance of dietary sugar comparedwith fat in the development of obesity is currently a topic of debate.

Objective:We aimed to identify dietary patterns (DPs) characterized by high sugar content, high fat content, or both and

their longitudinal associations with adiposity during childhood and adolescence.

Methods: Participants were 6722 children from the ALSPAC (Avon Longitudinal Study of Parents and Children) who were

born in 1991–1992. DPs were characterized by percentage of total energy intake (%E) from free sugars, %E from total fat,

and dietary energy density (DED) and fiber density by using reduced rank regression at 7, 10, and 13 y of age. Total body fat

mass was measured at 11, 13, and 15 y of age. Regression analyses were used to adjust for dietary misreporting, physical

activity, and maternal social class.

Results: Two major DPs were identified: higher z scores for DP1 were associated with greater DED, greater %E from free

sugars and total fat, and lower fiber density; higher z scores for DP2 were associated with greater %E from free sugars but

lower %E from total fat and DED. A 1-SD increase in z score for DP1 was associated with a mean increase in the fat mass

index z score of 0.04 SD units (95% CI: 0.01, 0.07; P = 0.017) and greater odds of excess adiposity (OR: 1.12; 95% CI: 1.0,

1.25; P = 0.038). DP2 was not associated with adiposity.

Conclusions: An energy-dense DP high in %E from total fat and free sugars is associated with greater adiposity in

childhood and adolescence. This appears to confirm the role of both fat and sugar and provides a basis for food-based

dietary guidelines to prevent obesity in children. J Nutr 2016;146:778–84.

Keywords: children, adolescents, obesity, adiposity, diet, dietary patterns, sugar, fat, energy density,

ALSPAC

Introduction

Overweight and obesity in childhood and adolescence are widely
acknowledged to be a serious and pressing public health concern.
Excess weight gain during childhood is associated with adverse

cardiometabolic profiles as well as other disorders (1), which tend
to persist over time and into adulthood (2).

Recently, there has been renewed debate about the dietary
determinants of obesity, with suggestions that sugar is a more
important risk factor than dietary fat (3). There is evidence to
suggest that both are causes for concern, because both are
associated with the overconsumption of energy (4). A meta-
analysis of randomized controlled trials and observational studies
showed that high-fat diets are associated with greater relative
body weight in adults and children (5). Another meta-analysis

3 Supplemental Tables 1–3 are available from the ‘‘Online Supporting Material’’

link in the online posting of the article and from the same link in the online table

of contents at http://jn.nutrition.org.
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concluded that the addition of sugar to the diet increases body
weight (6), and the WHO recently published guidelines
recommending reducing the intake of free sugars to <10% of
total energy intakes (EIs)9 across the life course (7). However, in
practice, consumers make decisions about foods rather than
individual nutrients. Few foods are composed solely of fat or
sugar, and the combination of sugar with fat creates a ‘‘hedonic
synergy’’ (4) underpinning the high palatability of foods such as
cakes, biscuits, and chocolate (8), which can undermine innate
appetite control. To develop practical guidance for consumers to
reduce the risk of excess weight gain, it may be more helpful to
consider the relation between whole foods or overall dietary
patterns (DPs) and the risk of obesity.

In 2012 we identified an energy-dense, high-fat, low-fiber
DP longitudinally associated with increased fat mass index
(FMI) and excess adiposity between 7 and 15 y of age in a large
United Kingdom birth cohort (9). We chose a priori to
investigate an empirically derived DP characterized by these
nutrients, because earlier WHO reviews supported fiber and
energy density as convincing dietary risk factors for obesity and
dietary fat as a major contributor to dietary energy density
(DED) (10). Apart from sugar-sweetened beverages (SSBs), there
was less convincing evidence for an association between free sugar
intake and obesity at that time (10). Because of the recent
emphasis on free (or added) sugars in the diet as an additional risk
factor for weight gain (6) and obesity, here we extend our 2012
analysis by investigating DPs characterized by free sugars in
addition to energy density, fat, and fiber, which, to our knowledge,
has not previously been done in this cohort. We hypothesized that
a high-sugar DP would be more strongly associated with body
fatness than our original high-fat, energy-dense, low-fiber DP (9).

Methods

Study population.Datawere sourced from the Avon Longitudinal Study
of Parents and Children (ALSPAC), which has been described in full

elsewhere (11). Briefly, ALSPAC is an observational birth cohort that

recruited 14,541 pregnant women in Avon, England, with an expected
delivery date between 1 April 1991 and 31December 1992. Of the 14,472

known birth outcomes, 14,062 were live births and 13,988 were alive at

1 y. An additional 713 children whose mothers were initially invited but

had not enrolled were recruited later. The total baseline cohort therefore
included 14,701 children who were alive at 1 y. Data have been collected

regularly from the children and their families via questionnaires and clinic

visits (11). Data from follow-ups of index offspring at 7 y (1998–2000; n =

8297), 10 y (2002–2003; n = 7563), 11 y (2003–2005; n = 7159), 13 y
(2005–2006; n = 6147), and 15 y (2006–2008; n = 5509) of age were used

in the present analysis. The study website contains details of all of the data

that are available through a fully searchable data dictionary (12). Parents

provided written consent for their child to participate in the study. Ethical
approval for the study was obtained from the ALSPAC Law and Ethics

Committee and the local research ethics committees.

Anthropometric measurements. DXA was used to measure total

body fat mass (FM) at the 11-, 13-, and 15-y follow-ups with the use of a

Lunar Prodigy DXA fan beam scanner (GE Medical Systems Lunar). As

previously described (9), we calculated the FMI separately for boys and
girls and at each follow-up visit by dividing fat mass (kg) by height (m)

raised to the optimum power [calculated by using log-log regression

analysis (13)] to remove any residual correlation between FM and height

(i.e., FM/heightx). The FMI was then log-transformed to obtain normal

distributions and standardized to a z score to support comparisons.

Excess adiposity was identified as being in the top quintile (>80th
percentile) of FMI z scores. Weight was measured to the nearest 0.1 g

at each follow-up visit by using a Tanita body fat analyzer (Tanita

Corporation). Height was measured to the nearest 0.1 cm without shoes

and socks by using a Harpenden stadiometer (Holtain Ltd.).

Dietary assessments. Three-day unweighed food diaries were com-

pleted at 7 y of age by the parent and at 10 and 13 y of age by the study
child, with parental assistance. The food diary was recorded over 3

nonconsecutive days (2 weekdays and 1 weekend day) and completed

diaries were checked and queried with the child and parent by a

nutritionist at clinic visits. The diaries were coded by using DIDO (14), a
program developed at the Medical Research Council Human Nutrition

Research Unit, Cambridge, United Kingdom, and linked with British

food-composition tables to estimate mean daily nutrient intakes.

The intake of free sugars was estimated as ‘‘all monosaccharides and
disaccharides added to foods by the manufacturer, cook or consumer, plus

sugars naturally present in honey, syrups, fruit juices and fruit juice

concentrates,’’ as defined by theWHO (7). Food intakes recorded in the 3-d

food diaries were categorized into 46major food groups as used in previous

FIGURE 1 Intakes of response variables by quintile of DP z scores

characterized by %E from free sugars, %E from total fat, DED (in MJ �
g21 � d21), and fiber density (in g � MJ21 � d21) at 7 y of age in the

ALSPAC cohort for DP1 (A) and DP2 (B). Values are means, n = 1457

in each quintile. ALSPAC, Avon Longitudinal Study of Parents and

Children; DED, dietary energy density; DP, dietary pattern; DP1,

energy-dense, high %E from free sugars, high %E from total fat, low

fiber dietary pattern; DP2, non–energy dense, high %E from free

sugars, and low %E from total fat dietary pattern; Q, quintile; %E,

proportion of total energy intake.

9 Abbreviations used: ALSPAC, Avon Longitudinal Study of Parents and Children;

DED, dietary energy density; DP, dietary pattern; EER, estimated energy

requirement; EI, energy intake; FD, fiber density; FM, fat mass; FMI, fat mass

index; GEE, generalized estimating equation; RRR, reduced rank regression;

SSB, sugar-sweetened beverage; %E, proportion of total energy intake.
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analyses of ALSPAC dietary data (9, 15). Dietary misreporting was

estimated by using the ratio of EI to estimated energy requirement (EER).

A 95% CI was calculated to classify individuals as plausible reporters,
overreporters (EI:EER >95%CI) or underreporters (EI:EER <95%CI) (16).

DPs. As per our 2012DP analysis in this cohort (9), we used reduced rank

regression (RRR) to identify DPs, or combinations of food intake, that
attempt to explain the maximum variation in a set of response variables

hypothesized to be on the pathway between food intake and obesity. The

RRR model included intakes of all 46 food groups (g/d) as predictor

variables and the following 4 response variables: the proportion of total
energy (%E) from free sugars (%E from sugar), the%E from total fat (%E

from fat), DED as energy (kJ) per gram of food consumed [excluding

beverages (17)], and dietary fiber density (FD) as grams of nonstarch
polysaccharide fiber per megajoule of total energy. The RRR model

extracts successive linear combinations of food intakes (factors or DPs)

until they explain themaximum amount of shared variation in all response

variables (18). The final number of DPs is equal to the number of response
variables in the model, and the first DP typically explains the most shared

variation among all response variables, with subsequent patterns explain-

ing smaller proportions of the remaining variation. Respondents were

scored for eachDP at each agewith the use of a z score that quantified how
their reported dietary intake reflected each DP relative to other respon-

dents in the study sample. The RRRmodel calculates DP z scores for each
respondent as a linear, weighted combination of all of their standardized

food group intakes by using weights unique to each DP. Increasing intakes
of foods with positive factor loadings increases the DP z score; increasing
intakes of foods with negative factor loadings decreases the DP z score.

The first 2 DPs (DP1 and DP2) derived in the RRR analysis
consistently explained the greatest amount of shared variation in all

FIGURE 2 Factor loadings for dietary

patterns characterized by %E from free

sugars, %E from total fat, dietary en-

ergy density, and fiber density calcu-

lated by using reduced rank regression

at 7 y of age in the ALSPAC cohort for

DP1 (A) and DP2 (B). ALSPAC, Avon

Longitudinal Study of Parents and Chil-

dren; DP1, energy-dense, high %E from

free sugars, high %E from total fat, low-

fiber dietary pattern; DP2, non–energy

dense, high %E from free sugars, and

low %E from total fat dietary pattern;

%E, proportion of total energy intake.
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response variables (24–35% each) at 7, 10, and 13 y (Supplemental

Table 1). The remaining 2 DPs (DP3 and DP4) explained relatively little

shared variation (5–8% each) and were therefore not taken forward for

further investigation. The foods characterizing DP1 and DP2 and the
amount of variation they explained for individual response variables

were also similar across ages (note: DP2 at 10 y was the exact inverse of

DP2 observed at 7 and 13 y; Supplemental Table 1) and did not vary

substantially by sex (data not shown). However, to assess longitudinal
changes in z scores for exactly the same DPs (those identified at 7 y),

confirmatory RRRwas applied to calculate z scores at 10 and 13 y of age

by using the scoring weights identified at 7 y of age.

Physical activity and other variables. Total physical activity was

measured with the use of an MTI Actigraph AM7164 2.2 accelerometer

at 11 and 13 y of age and analyzed as counts per minute (logged)

averaged over 3 d (Actigraph LLC) (19). Pubertal status was self-
reported at 11 and 13 y by using diagrams depicting the 5 Tanner stages

for pubic hair development (20). Maternal social class, classified from I

(professional) to IV (semiskilled) and V (unskilled manual workers) and
based on most recent or current occupation, was assessed by question-

naire at 32 wk of gestation.

Statistical analyses. Because nutrient intakes were normally distrib-
uted, mean (6SD) intakes were estimated by year of follow-up to

describe intakes in the study population. Mean nutrient intakes across

increasing quintiles of DP1 and DP2 z scores were estimated by using

linear regression. A trend in mean nutrient intake across increasing
quintiles was tested by modeling DP quintiles as continuous variables

and by using a z-test to test the null hypothesis (mean change in nutrient

intake per quintile increase = 0).
As previously described (9) and to make use of all available dietary

and adiposity data, generalized estimating equations (GEEs) were

applied to investigate longitudinal associations between DP z scores

and FMI z scores. These models regressed FMI on DP z score at the
previous time point by using DP z scores at 7, 10, and 13 y of age and

FMI z scores at 11, 13, and 15 y of age. A GEE model was similarly

applied to examine the odds of excess adiposity in relation to DP

z score. All GEE models were run by using the ‘‘xtgee’’ command in
Stata with an exchangeable correlation structure. Because the DPs

produced by RRR are uncorrelated (orthogonal) (18), z scores for

DP1 and DP2 were analyzed in mutually adjusted models to examine
their independent associations with adiposity. Models tested time-

varying covariates (i.e., age, dietary misreporting, physical activity,

Tanner stage) and fixed covariates (sex, maternal social class). Scores

for DP1 and DP2 were modeled as continuous (z scores) and
categorical (quintiles) variables. We tested for trends in associations

between the outcomes and increasing DP quintiles by modeling DP

quintiles as continuous variables. All GEE models used the z-test to
test the null hypothesis that each b-coefficient was equal to zero. An a

level#0.05 was used in all analyses. No interactions between DPs and

sex were observed and so boys and girls were analyzed together,

including sex as a covariate. To test if the strength of association (if

any) between the DPs and adiposity outcome varied by age, an
interaction term between DP z score and age at dietary assessment was

tested in each model. The Stata version 13 (I/C for Windows) code

created for this statistical analysis is available from the corresponding
author upon request.

Results

A description of the study population has been published
previously (9). Food diary data were available for 7285, 7471,
and 6106 children at 7, 10, and 13 y of age, respectively. Mean
daily intakes of key nutrients and anthropometric measurements
are shown in Supplemental Table 2. Intakes of %E from sugar
were high, averaging between 17.4% (median: 17%) at 7 y and
16.6% (median: 16%) at 13 y of age. The mean %E from fat at
each follow up was ;35% or more (Supplemental Table 2).

At 7 y of age, the first major DP (DP1) correlated positively
with DED, %E from fat, and %E from sugar and negatively with
FD, as indicated by their respective response variable weights:
0.67, 0.26, 0.31, and 20.63 (Supplemental Table 1). DP1
explained a majority of the variation in DED (63%) and FD
(55%) and small amounts of variation in %E from sugar and
%E from fat (Supplemental Table 1). An increasing z score for
DP1 was associated with greater %E from sugar, %E from fat,
and DED and lower FD (Figure 1, Supplemental Table 3). This
pattern was characterized by higher intakes of energy-dense
foods, including confectionery and chocolate, cakes and biscuits,
SSBs, and low-fiber bread, and lower intakes of fruit, vegetables,
and high-fiber bread and cereals and was similar to the DP we
identified in 2012 (Figure 2).

The second major DP (DP2) at 7 y of age was a new pattern
not previously identified in this cohort. Response variable
weights showed that DP2 was more strongly correlated with
%E from sugar (0.77) but was negatively correlated with %E
from fat (20.62) and DED (20.13) and not associated with FD
(20.01) (Supplemental Table 1). DP2 explained the majority
of variation in %E from sugar (60%), modest variation in %E
from fat (39%), and little to no variation in DED and FD
(Supplemental Table 1). An increasing z score for DP2 was
associated with increasing %E from sugar and decreasing %E
from fat and DED (Figure 1, Supplemental Table 3). However,
%E from sugar and %E from fat intakes associated with DP2
were high: in the top quintile for DP2, the mean %E from sugar
was 23.7% (well above the recommended 10%) and the mean
%E from fat was 31.7%. DP2 was strongly characterized by
high intakes of sugary foods including SSBs, fruit juices,
and ready-to-eat breakfast cereals (low-fiber breakfast cereals)
and low intakes of whole milk, margarines and oils, cheese, and
crisps (Figure 2). The factor loadings for DP1 and DP2 were
comparable at 7, 10, and 13 y of age (available from the authors
on request).

Higher z scores for DP1 (high in sugar, fat, and energy
density and low in fiber) were longitudinally associated with a
greater FMI z score at a later time point (Table 1). A 1-SD unit
increase in z score for DP1 between follow-ups was associated

TABLE 1 Prospective associations between DP z scores and
FMI z scores between 7 and 15 y of age in the ALSPAC cohort1

b (95% CI)2 P 3

Model 14 (n = 6772)

DP1 0.04 (0.01, 0.07) 0.017

DP2 20.02 (20.06, 0.01) 0.17

Model 25 (n = 5852)

DP1 0.04 (0.01, 0.07) 0.023

DP2 20.01 (20.05, 0.03) 0.54

Model 36 (n = 4729)

DP1 0.04 (0.01, 0.08) 0.028

DP2 20.03 (20.07, 0.02) 0.22

1 ALSPAC, Avon Longitudinal Study of Parents and Children; DP, dietary pattern; DP1,

energy-dense, high %E from free sugars, high %E from total fat and low-fiber dietary

pattern; DP2, non–energy dense, high %E from free sugars, and low%E from total fat

dietary pattern; FMI, fat mass index.
2 Estimated mean change in FMI z score associated with a 1-SD increase in DP z score

between dietary assessments.
3 P value for z-test: estimating the probability of rejecting the null hypothesis (b= 0)

when it is true.
4 Model 1: generalized estimating equation regressing previous DP z score on FMI z

score, adjusting for age, sex, and dietary misreporting.
5 Model 2: adjusted as in model 1 plus for physical activity.
6 Model 3: adjusted as in model 2 plus for maternal social class.
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with a 0.04-SD increase in FMI (95% CI: 0.01, 0.07), indepen-
dent of dietary misreporting, physical activity, and maternal
social class (Table 1). There was a weak interaction between
DP1 and age in relation to FMI z score (b =20.002, P = 0.08),
suggesting that this association may slightly diminish with
increasing age.

To assist interpretation, we estimated that an increase of a
1-SD unit in z score for DP1 (high in sugar, fat, and energy
density and low in fiber) could be achieved by replacing a small
serving of fruit equivalent to 60 g (e.g., 3 apricots, 0.5 cups
grapes, or 5 medium strawberries) with an average serving of
cake (90 g) while keeping all other food intakes constant. In
this population of growing teenagers, a change in FMI is a
function of change in FM and change in height. An increase of
0.04-SD units in FMI z score could be achieved by a gain in FM
of 3.0 kg and a concurrent increase in height of 1.9 cm between
the ages of 13 and 15 y (based on data from a girl in our data
set). The mean (6SD) change in FM for all girls between 13 and
15 y of age was 2.48 6 3.50 kg and the change in height was
2.78 6 2.17 cm. Although in this example the change in FMI
did not result in a shift from normal weight to overweight or
obese status [BMI (in kg/m2) shifted from 21.7 at 13 y to 22.8
at 15 y], the impact of change in FM is dependent on baseline
FM. Importantly, this change in FMI and FM represents the
increase between 13 and 15 y of age only; small increases in
adiposity tend to accumulate over time and may eventually lead
to clinically significant weight gain.

With each quintile increase in DP1 z score there was an
increasing trend in FMI z score (P = 0.001) (Figure 3).
Individuals in the top quintile of DP1 z scores had a 0.10-SD
(95% CI: 0.03, 0.16) higher FMI z score relative to their peers in
the lowest quintile (Figure 3).

The odds of excess adiposity (having an FMI in the top 20th
percentile) was positively associated with DP1. A 1-SD unit
increase in DP1 z score between follow-ups was associated with
a 12% higher odds of excess adiposity (OR: 1.12; 95% CI:
1.00, 1.25) (Table 2). This association was stable after
adjustment for dietary misreporting and physical activity (OR:
1.14; 95% CI: 1.0, 1.29) but was slightly attenuated after
additional adjustment for maternal social class (OR: 1.11; 95%
CI: 0.97,1.28). The odds of excess adiposity among children
in the top compared with the bottom quintile of DP1 z score
after adjustment was 1.17 (95% CI: 0.93, 1.48) (Figure 3). No
interactions between DP1 z score and age were observed in
relation to excess adiposity.

DP2 (high in sugar and low in fat and energy density) was not
associated with FMI z score (Table 1, Figure 3) or odds of excess
adiposity (Table 2, Figure 3). Adjustment for pubertal develop-
ment made little difference in any of the reported effect sizes
but reduced the number of participants included in the models
significantly and was therefore not included in the final reported
models.

Discussion

This longitudinal analysis extends our previous work in a large
population-based cohort of children by identifying and con-
trasting 2 major DPs characterized by their free sugar, fat,
energy-density, and fiber content and their relations with

FIGURE 3 Quintiles of DP1 and DP2 z scores in relation to FMI z

score (A, B) and odds of excess adiposity (C, D) between 7 and 15 y of

age in the ALSPAC cohort. (A, B) Plotted values (diamonds) represent

the mean increase in FMI z score (b-coefficients and 95% CIs)

associated with a quintile increase in DP z score between follow-ups,

relative to the lowest quintile, adjusted for age, sex, dietary

misreporting, physical activity, and maternal social class. (C, D)

Plotted values (circles) represent the odds of excess adiposity (ORs

and 95% CIs) associated with a quintile increase in DP z score

between follow-ups, relative to the lowest quintile, adjusted for age,

sex, dietary misreporting, physical activity, and maternal social class.

P-trend values were derived from modelling DP quintiles as contin-

uous variables. DP1 median z score in each quintile: 21.37 (Q1),

20.47 (Q2), 0.06 (Q3), 0.56 (Q4), and 1.28 (Q5); DP2 median z scores

in each quintile: 21.07 (Q1), 20.47 (Q2), 20.05 (Q3), 0.39 (Q4), and

1.14 (Q5). ALSPAC, Avon Longitudinal Study of Parents and Children;

DP, dietary pattern; DP1, energy-dense, high %E from free sugars,

high %E from total fat, and low-fiber dietary pattern; DP2, non–energy

dense, high %E from free sugars, and low %E from total fat dietary

pattern; FMI, fat mass index; Q, quintile; %E, proportion of total

energy intake.

782 Ambrosini et al.

 at U
N

IV
E

R
S

IT
Y

 O
F

 B
R

IS
T

O
L C

A
N

Y
N

G
E

 H
A

LL LIB
R

A
R

Y
 on A

pril 19, 2016
jn.nutrition.org

D
ow

nloaded from
 

http://jn.nutrition.org/


adiposity. Both DPs were high in free sugars, but they differed
somewhat in fat intake and, to lesser degree, in energy density.
Only the energy-dense DP (DP1) that was high in both sugar
and fat was longitudinally associated with a greater FMI and
increased risk of excess adiposity between 7 and 15 y of age. The
lack of association for the DP that was high in sugar but lower
in fat and energy density (DP2) suggests that a DP mostly
characterized by high sugar intake is not a predictor of adiposity
in this cohort, whereas the positive associations for a DP high in
both fat and sugar (DP1) highlight their joint importance as a
determinant of obesity in childhood.

The magnitude of associations observed between DP1 and
adiposity is similar to that observed between our original energy-
dense, high-fat, low-fiber DP and adiposity (0.04-SD unit
increase in FMI z score; 95% CI: 0.01, 0.07) (9). This is likely
because our original DP and DP1 from the present analysis
(although derived by using different response variables) are
similar in energy density, %E from fat, %E from sugar, and FD
profiles. Interestingly, we did not observe a common DP in this
cohort that was high in fat and low in sugar; both of the
observed major DPs were high in free sugars, indicating that
sugar is a prevailing component of the diets of these children.

Meeting population targets for intakes of free sugars (<10 %E)
and fat (<30 %E) is challenging and it may be preferable to
adopt a food-based approach to translate nutrient prescriptions
into public health guidance for consumers. We examined DPs
rather than individual nutrients or foods to gain insight into
food-based DPs associated with obesity and to take account of
several nutrients that may modulate the risk of obesity, and their
potential interactions. This analysis allowed us to identify key
food groups that, together, comprise a DP associated with greater
adiposity. Those food groups likely to confer a greater adiposity
risk (having a positive factor loading on DP1) included confec-
tionery and chocolate, cakes and biscuits, SSBs, crisps, low-fiber
breads, and low-fiber breakfast cereals. Food groups likely to
confer a lower risk (negatively loaded on DP1) included fruits,
vegetables, high-fiber breakfast cereals, and high-fiber breads.

Two meta-analyses of randomized controlled trials and
observational studies highlighted roles for dietary fat and free
sugars in weight gain (5, 6). The 2013 meta-analysis confirmed a
link between SSBs and body fatness but did not find a consistent
association between free sugar intake per se and adiposity in
children (6). This is possibly because the limited number of
randomized controlled trials in children focused on advice to
reduce SSB consumption and these reported poor compliance
(6). Furthermore, only 3 of the 21 cohort studies included in the
meta-analysis examined sugar intake as added sugar or sucrose
intake in relation to adiposity and these reported mixed findings
(21–23). The inconsistencies may also result from these studies
having a focus on SSBs or macronutrients only while ignoring
other dietary factors and the diet as a whole. We are not aware
of any other studies to date that have examined food-based
empirical DPs characterized by high sugar and fat intakes with
the use of the RRR method in children or adults. However, an
Australian longitudinal study of 4164 children aged 4–5 y old
reported that intakes of SSBs and high-fat foods were positively
associated with a higher BMI z score 6 y later (24).

This analysis has several strengths. In using the RRR
method, we applied a hypothesis-driven approach that identified
patterns in food intake explaining the nutrients of most
interest: free sugars, fat, fiber, and DED. The use of 3-d food
diaries at each follow-up (7, 10, and 13 y) provides a high
amount of detail on usual dietary intake and allowed us to
examine DPs throughout childhood and adolescence rather
than a single time point only. However, there is no error-free
method for assessing usual dietary intake. Underreporting of
EI in self-reports is common among adolescents (25) and
overweight respondents and can lead to biased diet-disease
observations (26). For this reason, we attempted to control
for dietary misreporting in our statistical analyses. Not-
withstanding concerns about individuals� underreporting
of EI, it is clear that food diaries reveal substantial intra-
individual variation in the proportions of different types
of foods and drinks consumed, which can be exploited in
DP analyses. We were also able to adjust for objectively
measured physical activity, and this had minimal effect on
the associations.

This study was conducted in a geographically defined area of
the United Kingdom; although the cohort was representative of
the United Kingdom population at recruitment, cohort attrition
led to the current ‘‘enrolled sample’’ having greater representa-
tion from children with a higher level of educational achieve-
ment and higher family income (11), which may limit
generalizability. However, the large number of children and the
number of repeated measurements included in this analysis is a
major strength. Furthermore, by using longitudinal statistical
models (GEEs), all of the available data points were analyzed
rather than limiting and potentially biasing the analysis to only
those children who completed every follow-up.

In conclusion, a DP high in both fat and sugar is longitudi-
nally associated with greater adiposity between 7 and 15 y
of age in this cohort. In contrast, a DP similarly high in %E
from free sugars but lower in %E from total fat and energy
density was not associated with adiposity. Although our
analysis does not support the contention that sugar has
a unique role in the etiology of obesity, sugar needs to be
considered as part of an overall DP, and it is clear that sugar
and fat are key features of DPs that are linked to excess weight
gain. Public health interventions to limit the consumption of
sugar, together with dietary fat, and to boost fiber are urgently
needed.

TABLE 2 Prospective associations between DP z scores and
risk of excess adiposity between 7 and 15 y of age in the ALSPAC
cohort1

OR (95% CI)2 P 3

Model 14 (n = 6772)

DP1 1.12 (1.01, 1.25) 0.038

DP2 0.95 (0.83, 1.08) 0.42

Model 25 (n = 5852)

DP1 1.14 (1.00, 1.29) 0.045

DP2 0.96 (0.83, 1.11) 0.55

Model 36 (n = 4729)

DP1 1.11 (0.97, 1.28) 0.14

DP2 0.92 (0.78, 1.09) 0.34

1 ALSPAC, Avon Longitudinal Study of Parents and Children; DP, dietary pattern; DP1,

energy-dense, high %E from free sugars, high %E from total fat and low-fiber dietary

pattern; DP2, non–energy dense, high %E from free sugars, and low%E from total fat

dietary pattern; FMI, fat mass index.
2 Estimated odds of excess adiposity associated with a 1-SD increase in DP z score

between dietary assessments.
3 P value for z-test: estimating the probability of rejecting the null hypothesis (OR = 0)

when it is true.
4 Model 1: generalized estimating equation (logistic) regressing previous DP z score on

excess adiposity (FMI z score .80th percentile), adjusted for age, sex, and dietary

misreporting.
5 Model 2: adjusted as in model 1 plus for physical activity.
6 Model 3: adjusted as in model 2 plus for maternal social class.
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