170 research outputs found

    Oestrogen, an evolutionary conserved regulator of T cell differentiation and immune tolerance in jawed vertebrates?

    Get PDF
    In teleosts, as in mammals, the immune system is tightly regulated by sexual steroid hormones, such as oestrogens. We investigated the effects of 17β-oestradiol on the expression of several genes related to T cell development and resulting T cell subpopulations in sea bass, Dicentrarchus labrax, for a primary lymphoid organ, the thymus, and two secondary lymphoid organs, the head-kidney and the spleen. In parallel, the oxidative burst capacity was assessed in leucocytes of the secondary lymphoid organs. Apoptosis- and proliferation-related genes, indicative of B and T cell clonal selection and lymphoid progenitor activity, were not affected by elevated oestrogen-levels. Sex-related oestrogen-responsiveness in T cell and antigen-presenting cell markers was observed, the expression of which was differentially induced by oestrogen-exposure in the three lymphoid organs. Remarkably, in the spleen, oestrogen increased regulatory T cell-related gene expression was associated with a decrease in oxidative burst capacity. To the best of our knowledge, this study indicates for the first time that physiological levels of oestrogen are likely to promote immune tolerance by modulating thymic function (i.e., T cell development and output) and peripheral T cells in teleosts, similar to previously reported oestrogenic effects in mammals.CCMAR/Multi/04326/2013; ANRfinanced project ETaT(ANR-15-CE32-0014); FR CNRS 3730 SCALE scholarshipinfo:eu-repo/semantics/publishedVersio

    Data processing and classification analysis of proteomic changes: a case study of oil pollution in the mussel, Mytilus edulis

    Get PDF
    BACKGROUND: Proteomics may help to detect subtle pollution-related changes, such as responses to mixture pollution at low concentrations, where clear signs of toxicity are absent. The challenges associated with the analysis of large-scale multivariate proteomic datasets have been widely discussed in medical research and biomarker discovery. This concept has been introduced to ecotoxicology only recently, so data processing and classification analysis need to be refined before they can be readily applied in biomarker discovery and monitoring studies. RESULTS: Data sets obtained from a case study of oil pollution in the Blue mussel were investigated for differential protein expression by retentate chromatography-mass spectrometry and decision tree classification. Different tissues and different settings were used to evaluate classifiers towards their discriminatory power. It was found that, due the intrinsic variability of the data sets, reliable classification of unknown samples could only be achieved on a broad statistical basis (n > 60) with the observed expression changes comprising high statistical significance and sufficient amplitude. The application of stringent criteria to guard against overfitting of the models eventually allowed satisfactory classification for only one of the investigated data sets and settings. CONCLUSION: Machine learning techniques provide a promising approach to process and extract informative expression signatures from high-dimensional mass-spectrometry data. Even though characterisation of the proteins forming the expression signatures would be ideal, knowledge of the specific proteins is not mandatory for effective class discrimination. This may constitute a new biomarker approach in ecotoxicology, where working with organisms, which do not have sequenced genomes render protein identification by database searching problematic. However, data processing has to be critically evaluated and statistical constraints have to be considered before supervised classification algorithms are employed

    Developmental immunotoxicology: What underlies the critical windows of exposure?

    Get PDF
    Endocrine disruptors in general and oestrogenic compounds in particular have been widely investigated in view of their effects on several physiological processes and, therefore, their ecotoxicologic relevance. [...

    Toward a common approach for assessing the conservation status of marine turtle species within the European marine strategy framework directive

    Full text link
    [EN] Environmental policies, including the European Marine Strategy Framework Directive (MSFD), generally rely on the measurement of indicators to assess the good environmental status (GES) and ensure the protection of marine ecosystems. However, depending on available scientific knowledge and monitoring programs in place, quantitative GES assessments are not always feasible. This is specifically the case for marine turtle species, which are listed under the Biodiversity Descriptor of the MSFD. Relying on an expert consultation, the goal of this study was to develop indicators and a common assessment approach to be employed by European Union Member States to evaluate the status of marine turtle populations in the frame of the MSFD. A dedicated international expert group was created to explore and test potential assessment approaches, in coherence with other environmental policies (i.e. Habitats Directive, OSPAR and Barcelona Conventions). Following a series of workshops, the group provided recommendations for the GES assessment of marine turtles. In particular, indicators and assessment methods were defined, setting a solid basis for future MSFD assessments. Although knowledge gaps remain, data requirements identified in this study will guide future data collection initiatives and inform monitoring programs implemented by EU Member States. Overall this study highlights the value of international collaboration for the conservation of vulnerable species, such as marine turtles.This study was funded by the French Ministry of Environment (MTES-MNHN Conventions n degrees 2102636187 (2019) and n degrees 2102994526 (2020)). DM acknowledges support from the European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement n degrees 794938. The work of ADM was supported by the Hellenic Foundation for Research and Innovation (H.F.R.I.) under the "First Call for H.F.R.I. Research Projects to support Faculty members and Researchers and the procurement of high-cost research equipment grant" (Project Number: 2340). FV was supported by the Investigator Programme of the Fundacao para a Ciencia e Tecnologia (FCT, CEECIND/03469/2017, CEECIND/03426/2020).Girard, F.; Girard, A.; Monsinjon, J.; Arcangeli, A.; Belda, E.; Cardona, L.; Casale, P.... (2022). Toward a common approach for assessing the conservation status of marine turtle species within the European marine strategy framework directive. Frontiers in Marine Science. 9:1-22. https://doi.org/10.3389/fmars.2022.790733122

    Disruption of the sea bass skin-scale barrier by antidepressant fluoxetine and estradiol: in vivo and in vitro evidence

    Get PDF
    Trabajo presentado en la Joint 30th Conference of the European Society for Comparative Endocrinology and of the 9th International Society for Fish Endocrinology, celebrada en Faro (Portugal) del 04 al 08 de septiembre de 2022.Fluoxetine (FLX) is a highly prescribed selective inhibitor of serotonin-reuptake and an emerging pollutant affecting fish behaviour, stress and reproduction, but little is known about possible actions and mechanisms in barrier tissues. We combined in vivo and in vitro approaches to demonstrate multi-level impacts of FLX on the sea bass (Dicentrarchus labrax) skin-scale barrier and on the estrogenic system. Juvenile sea bass intraperitoneally injected with FLX had significantly increased levels of FLX and its metabolite nor-FLX. In contrast to the natural estrogen E2, FLX did not increase plasma calcium, phosphorus (P) or vitellogenin, although a slight decrease in scale P content was detected. Quantitative SWATH-MS proteomics of the scales identified 134 proteins that were affected by FLX. Modified proteins were mainly related to extracellular matrix and protein turnover and energy production, 31 of which were also affected by E2. Multiple estrogen receptors and genes related to serotonin activity, transport and degradation were expressed in sea bass scales and transcript abundance of some of them was modulated by E2 and/or FLX. Using a minimally invasive in vitro bioassay with cultured sea bass scales and adhering epithelia we showed direct effects of FLX exposure on enzymatic activity associated with mineral mobilization, while the expression of estrogen receptors was not significantly affected. In in vitro receptor-reporter assays, FLX alone did not activate any of the three sea bass nuclear estrogen receptors but had antiestrogenic effects on Esr1/2b when in co-treatment with E2, and directly activated both plasma membrane Gprotein-coupled estrogen receptors. The combination of in vitro and in vivo assays substantiated the notion that FLX disrupted scale physiology through several different processes, with probable consequences for fish health, and revealed that some of the mechanisms of disruption can result from direct interaction with multiple estrogen .Projects UIDB/04326/2020, PTDC/AAG-GLO/4003/2012 and DL57/2016/CP1361/CT0015 from FCT (Pt); EU Interreg FR-UK project RedPol; grant AGL2015-67477-C2-1- R (Sp)

    Sepsis, complement and the dysregulated inflammatory response

    Full text link
    •   Introduction -   Models of sepsis -   Evidence for complement activation in sepsis -   Protective effects of C5a generated in limited amounts -   Sepsis-induced changes in signalling cascades -   Divergent effects on phagocytic cells during sepsis -   Harmful effects of C5a and C5a receptors in experimental sepsis •   Future directions Sepsis in human beings is a major problem involving many individuals and with a high death rate. Except for a single drug (recombinant activated protein C) that has been approved for treatment of septic patients, supportive measures represent the main clinical approach. There are many models of experimental sepsis, mostly in rodents. A commonly used model is cecal ligation and puncture (CLP). In this model, robust activation of complement occurs together with up-regulation of C5a receptors (C5aR, C5L2) in a variety of different organs (lungs, kidneys, liver, heart). In septic human beings there is abundant evidence for complement activation. Interception of C5a or its receptors in the CLP model greatly improves survival in septic rodents. There is compelling evidence that CLP causes an intense pro-inflammatory state and that C5a interaction with its receptors can be linked to apoptosis of the lymphoid system and cells of the adrenal medulla, loss of innate immune functions of blood neutrophils, consumptive coagulopathy and cardiac dysfunction. These findings may have implications for therapeutic interventions in human beings with sepsis.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/74963/1/j.1582-4934.2009.00893.x.pd
    corecore