51 research outputs found

    Health-related quality of life in relation to shark symptomatic and radiographic definitions of knee osteoarthritis: data from Osteoarthritis Initiative (OAI) 4-year follow- up study

    Get PDF
    Background: The purpose was to quantify the decrement in health utility (referred as disutility) associated with knee osteoarthritis (OA) and different symptomatic and radiographic uni- and bilateral definitions of knee OA in a repeated measures design of persons with knee OA or at increased risk of developing knee OA.Methods: Data were obtained from the Osteoarthritis Initiative database. SF-12 health-related quality of life was converted into SF-6D utilities, and were then handled as the health utility loss by subtracting 1.000 from the utility score, yielding a negative value (disutility). Symptomatic OA was defined by radiographic findings (Kellgren-Lawrence, K-L, grade >= 2) and frequent knee pain in the same knee. Radiographic OA was defined by five different definitions (K-L >= 2 unilaterally / bilaterally, or the highest / mean / combination of K-L grades of both knees). Repeated measures generalized estimating equation (GEE) models were used to investigate disutility in relation to these different definitions.Results: Utility decreased with worsening of symptomatic or radiographic status of knee OA. The participants with bilateral and unilateral symptomatic knee OA had 0.03 (p < 0.001) and 0.02 (p < 0.001) points lower utility scores, respectively, compared with the reference group. The radiographic K-L grade 4 defined as the mean or the highest grade of both knees was related to a decrease of 0.04 (p < 0.001) and 0.03 (p < 0.001) points in utility scores, respectively, compared to the reference group.Conclusions: Knee OA is associated with diminished health-related quality of life. Health utility can be quantified in relation to both symptomatic and radiographic uni- and bilateral definitions of knee OA, and these definitions are associated with differing disutilities. The performance of symptomatic definition was better, indicating that pain experience is an important factor in knee OA related quality of life

    Eight-year trajectories of changes in health-related quality of life in knee osteoarthritis: Data from the Osteoarthritis Initiative (OAI).

    Get PDF
    BACKGROUND:Knee osteoarthritis (OA) worsens health-related quality of life (HRQoL) but the symptom pathway varies from person to person. We aimed to identify groups of people with knee OA or at its increased risk whose HRQoL changed similarly. Our secondary aim was to evaluate if patient-related characteristics, incidence of knee replacement (KR) and prevalence of pain medication use differed between the identified HRQoL trajectory groups.METHODS:Eight-year follow-up data of 3053 persons with mild knee OA or at increased risk were obtained from the public Osteoarthritis Initiative (OAI) database. Group-based trajectory modeling was used to identify patterns of experiencing a decrease of ≄10 points (Minimal Important Change, MIC) in the Quality of Life subscale of the Knee injury and Osteoarthritis Outcome Score compared to baseline. Multinomial logistic regression, Cox regression and generalized estimating equation models were used to study secondary aims.RESULTS:Four HRQoL trajectory groups were identified. Persons in the 'no change' group (62.9%) experienced no worsening in HRQoL. 'Rapidly' (9.5%) and 'slowly' worsening (17.1%) groups displayed an increasing probability of experiencing the MIC in HRQoL. The fourth group (10.4%) had 'improving' HRQoL. Female gender, higher body mass index, smoking, knee pain, and lower income at baseline were associated with belonging to the 'rapidly worsening' group. People in 'rapidly' (hazard ratio (HR) 6.2, 95% confidence interval (CI) 3.6-10.7) and 'slowly' worsening (HR 3.4, 95% CI 2.0-5.9) groups had an increased risk of requiring knee replacement. Pain medication was more rarely used in the 'no change' than in the other groups.CONCLUSIONS:HRQoL worsening was associated with several risk factors; surgical and pharmacological interventions were more common in the poorer HRQoL trajectory groups indicating that HRQoL does reflect the need for OA treatment. These findings may have implications for targeting interventions to specific knee OA patient groups.</h4

    Rapid CT-based Estimation of Articular Cartilage Biomechanics in the Knee Joint Without Cartilage Segmentation

    Get PDF
    Knee osteoarthritis (OA) is a painful joint disease, causing disabilities in daily activities. However, there is no known cure for OA, and the best treatment strategy might be prevention. Finite element (FE) modeling has demonstrated potential for evaluating personalized risks for the progression of OA. Current FE modeling approaches use primarily magnetic resonance imaging (MRI) to construct personalized knee joint models. However, MRI is expensive and has lower resolution than computed tomography (CT). In this study, we extend a previously presented atlas-based FE modeling framework for automatic model generation and simulation of knee joint tissue responses using contrast agent-free CT. In this method, based on certain anatomical dimensions measured from bone surfaces, an optimal template is selected and scaled to generate a personalized FE model. We compared the simulated tissue responses of the CT-based models with those of the MRI-based models. We show that the CT-based models are capable of producing similar tensile stresses, fibril strains, and fluid pressures of knee joint cartilage compared to those of the MRI-based models. This study provides a new methodology for the analysis of knee joint and cartilage mechanics based on measurement of bone dimensions from native CT scans

    Experimental validation of a new biphasic model of the contact mechanics of the porcine hip

    Get PDF
    Hip models that incorporate the biphasic behaviour of articular cartilage can improve understanding of the joint function, pathology of joint degeneration and effect of potential interventions. The aim of this study was to develop a specimen-specific biphasic finite element model of a porcine acetabulum incorporating a biphasic representation of the articular cartilage and to validate the model predictions against direct experimental measurements of the contact area in the same specimen. Additionally, the effect of using a different tension-compression behaviour for the solid phase of the articular cartilage was investigated. The model represented different radial clearances and load magnitudes. The comparison of the finite element predictions and the experimental measurement showed good agreement in the location, size and shape of the contact area, and a similar trend in the relationship between contact area and load was observed. There was, however, a deviation of over 30% in the magnitude of the contact area, which might be due to experimental limitations or to simplifications in the material constitutive relationships used. In comparison with the isotropic solid phase model, the tension-compression solid phase model had better agreement with the experimental observations. The findings provide some confidence that the new biphasic methodology for modelling the cartilage is able to predict the contact mechanics of the hip joint. The validation provides a foundation for future subject-specific studies of the human hip using a biphasic cartilage model

    Associations of functional alanine-glyoxylate aminotransferase 2 gene variants with atrial fibrillation and ischemic stroke

    Get PDF
    Asymmetric and symmetric dimethylarginines (ADMA and SDMA) impair nitric oxide bioavailability and have been implicated in the pathogenesis of atrial fibrillation (AF). Alanine-glyoxylate aminotransferase 2 (AGXT2) is the only enzyme capable of metabolizing both of the dimethylarginines. We hypothesized that two functional AGXT2 missense variants (rs37369, V140I; rs16899974, V498L) are associated with AF and its cardioembolic complications. Association analyses were conducted using 1,834 individulas with AF and 7,159 unaffected individuals from two coronary angiography cohorts and a cohort comprising patients undergoing clinical exercise testing. In coronary angiography patients without structural heart disease, the minor A allele of rs16899974 was associated with any AF (OR = 2.07, 95% CI 1.59-2.68), and with paroxysmal AF (OR = 1.98, 95% CI 1.44-2.74) and chronic AF (OR = 2.03, 95% CI 1.35-3.06) separately. We could not replicate the association with AF in the other two cohorts. However, the A allele of rs16899974 was nominally associated with ischemic stroke risk in the meta-analysis of WTCCC2 ischemic stroke cohorts (3,548 cases, 5,972 controls) and with earlier onset of first-ever ischemic stroke (360 cases) in the cohort of clinical exercise test patients. In conclusion, AGXT2 variations may be involved in the pathogenesis of AF and its age-related thromboembolic complications.</p

    The genomic landscape of balanced cytogenetic abnormalities associated with human congenital anomalies

    Get PDF
    Despite the clinical significance of balanced chromosomal abnormalities (BCAs), their characterization has largely been restricted to cytogenetic resolution. We explored the landscape of BCAs at nucleotide resolution in 273 subjects with a spectrum of congenital anomalies. Whole-genome sequencing revised 93% of karyotypes and demonstrated complexity that was cryptic to karyotyping in 21% of BCAs, highlighting the limitations of conventional cytogenetic approaches. At least 33.9% of BCAs resulted in gene disruption that likely contributed to the developmental phenotype, 5.2% were associated with pathogenic genomic imbalances, and 7.3% disrupted topologically associated domains (TADs) encompassing known syndromic loci. Remarkably, BCA breakpoints in eight subjects altered a single TAD encompassing MEF2C, a known driver of 5q14.3 microdeletion syndrome, resulting in decreased MEF2C expression. We propose that sequence-level resolution dramatically improves prediction of clinical outcomes for balanced rearrangements and provides insight into new pathogenic mechanisms, such as altered regulation due to changes in chromosome topology

    Genetic analyses of the electrocardiographic QT interval and its components identify additional loci and pathways.

    Get PDF
    The QT interval is an electrocardiographic measure representing the sum of ventricular depolarization and repolarization, estimated by QRS duration and JT interval, respectively. QT interval abnormalities are associated with potentially fatal ventricular arrhythmia. Using genome-wide multi-ancestry analyses (>250,000 individuals) we identify 177, 156 and 121 independent loci for QT, JT and QRS, respectively, including a male-specific X-chromosome locus. Using gene-based rare-variant methods, we identify associations with Mendelian disease genes. Enrichments are observed in established pathways for QT and JT, and previously unreported genes indicated in insulin-receptor signalling and cardiac energy metabolism. In contrast for QRS, connective tissue components and processes for cell growth and extracellular matrix interactions are significantly enriched. We demonstrate polygenic risk score associations with atrial fibrillation, conduction disease and sudden cardiac death. Prioritization of druggable genes highlight potential therapeutic targets for arrhythmia. Together, these results substantially advance our understanding of the genetic architecture of ventricular depolarization and repolarization

    Multi-ancestry GWAS of the electrocardiographic PR interval identifies 202 loci underlying cardiac conduction

    Get PDF
    The electrocardiographic PR interval reflects atrioventricular conduction, and is associated with conduction abnormalities, pacemaker implantation, atrial fibrillation (AF), and cardiovascular mortality. Here we report a multi-ancestry (N = 293,051) genome-wide association meta-analysis for the PR interval, discovering 202 loci of which 141 have not previously been reported. Variants at identified loci increase the percentage of heritability explained, from 33.5% to 62.6%. We observe enrichment for cardiac muscle developmental/contractile and cytoskeletal genes, highlighting key regulation processes for atrioventricular conduction. Additionally, 8 loci not previously reported harbor genes underlying inherited arrhythmic syndromes and/or cardiomyopathies suggesting a role for these genes in cardiovascular pathology in the general population. We show that polygenic predisposition to PR interval duration is an endophenotype for cardiovascular disease, including distal conduction disease, AF, and atrioventricular pre-excitation. These findings advance our understanding of the polygenic basis of cardiac conduction, and the genetic relationship between PR interval duration and cardiovascular disease. </p
    • 

    corecore