64 research outputs found

    DISCHARGE HOME AFTER ACUTE STROKE: DIFFERENCES BETWEEN OLDER AND YOUNGER PATIENTS

    Get PDF
    Objective: To identify determinants for discharge destination of older (≥ 70 years) and younger (<70 years) acute stroke patients. Design: Multicentre prospective cohort. Patients: A total of 395 patients, within 7 days of clinically evaluated stroke, were included from 6 hospital stroke units. Methods: The main outcome measure was discharge destination (home vs clinical rehabilitation). Independent variables were: demographic factors, stroke characteristics, functional impairments and disabilities, cognition, comorbidity, and premorbid social participation. Multivariate logistic regression analysis established the independent strength of the contribution of possible determinants to discharge destination. Results: Seventy-six percent of younger patients were discharged home, compared with 63% of older patients. Most of the younger patients discharged to clinical rehabilitation (71%) had a spouse, whereas only 40% of the older age group discharged to clinical rehabilitation had a spouse. Multivariate analysis showed that, besides National Institutes of Health Stroke Scale and Barthel Index scores, having a spouse was an important determinant for discharge home in the older age group (adjusted odds ratio 4.77, 95% confidence interval 2.01-11.31), but not in the younger age group. Conclusion: The presence of a spouse is an additional important factor determining discharge home in older stroke patients. It is important to monitor and support informal caregivers in order to provide appropriate care for older community-dwelling stroke patients

    A Randomized Controlled Trial of Folate Supplementation When Treating Malaria in Pregnancy with Sulfadoxine-Pyrimethamine

    Get PDF
    OBJECTIVES: Sulfadoxine-pyrimethamine (SP) is an antimalarial drug that acts on the folate metabolism of the malaria parasite. We investigated whether folate (FA) supplementation in a high or a low dose affects the efficacy of SP for the treatment of uncomplicated malaria in pregnant women. DESIGN: This was a randomized, placebo-controlled, double-blind trial. SETTING: The trial was carried out at three hospitals in western Kenya. PARTICIPANTS: The participants were 488 pregnant women presenting at their first antenatal visit with uncomplicated malaria parasitaemia (density of ≥ 500 parasites/μl), a haemoglobin level higher than 7 g/dl, a gestational age between 17 and 34 weeks, and no history of antimalarial or FA use, or sulfa allergy. A total of 415 women completed the study. INTERVENTIONS: All participants received SP and iron supplementation. They were randomized to the following arms: FA 5 mg, FA 0.4 mg, or FA placebo. After 14 days, all participants continued with FA 5 mg daily as per national guidelines. Participants were followed at days 2, 3, 7, 14, 21, and 28 or until treatment failure. OUTCOME MEASURES: The outcomes were SP failure rate and change in haemoglobin at day 14. RESULTS: The proportion of treatment failure at day 14 was 13.9% (19/137) in the placebo group, 14.5% (20/138) in the FA 0.4 mg arm (adjusted hazard ratio [AHR], 1.07; 98.7% confidence interval [CI], 0.48 to 2.37; p = 0.8), and 27.1% (38/140) in the FA 5 mg arm (AHR, 2.19; 98.7% CI, 1.09 to 4.40; p = 0.005). The haemoglobin levels at day 14 were not different relative to placebo (mean difference for FA 5 mg, 0.17 g/dl; 98.7% CI, −0.19 to 0.52; and for FA 0.4 mg, 0.14 g/dl; 98.7% CI, −0.21 to 0.49). CONCLUSIONS: Concomitant use of 5 mg FA supplementation compromises the efficacy of SP for the treatment of uncomplicated malaria in pregnant women. Countries that use SP for treatment or prevention of malaria in pregnancy need to evaluate their antenatal policy on timing or dose of FA supplementation

    A nonsynonymous mutation in PLCG2 reduces the risk of Alzheimer's disease, dementia with Lewy bodies and frontotemporal dementia, and increases the likelihood of longevity

    Get PDF
    The genetic variant rs72824905-G (minor allele) in the PLCG2 gene was previously associated with a reduced Alzheimer's disease risk (AD). The role of PLCG2 in immune system signaling suggests it may also protect against other neurodegenerative diseases and possibly associates with longevity. We studied the effect of the rs72824905-G on seven neurodegenerative diseases and longevity, using 53,627 patients, 3,516 long-lived individuals and 149,290 study-matched controls. We replicated the association of rs72824905-G with reduced AD risk and we found an association with reduced risk of dementia with Lewy bodies (DLB) and frontotemporal dementia (FTD). We did not find evidence for an effect on Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS) and multiple sclerosis (MS) risks, despite adequate sample sizes. Conversely, the rs72824905-G allele was associated with increased likelihood of longevity. By-proxy analyses in the UK Biobank supported the associations with both dementia and longevity. Concluding, rs72824905-G has a protective effect against multiple neurodegenerative diseases indicating shared aspects of disease etiology. Our findings merit studying the PLC?2 pathway as drug-target

    Lithium carbonate in amyotrophic lateral sclerosis patients homozygous for the C-allele at SNP rs12608932 in UNC13A: protocol for a confirmatory, randomized, group-sequential, event-driven, double-blind, placebo-controlled trial

    Full text link
    BackgroundGiven the large genetic heterogeneity in amyotrophic lateral sclerosis (ALS), it seems likely that genetic subgroups may benefit differently from treatment. An exploratory meta-analysis identified that patients homozygous for the C-allele at SNP rs12608932, a single nucleotide polymorphism in the gene UNC13A, had a statistically significant survival benefit when treated with lithium carbonate. We aim to confirm the efficacy of lithium carbonate on the time to death or respiratory insufficiency in patients with ALS homozygous for the C-allele at SNP rs12608932 in UNC13A. MethodsA randomized, group-sequential, event-driven, double-blind, placebo-controlled trial will be conducted in 15 sites across Europe and Australia. Patients will be genotyped for UNC13A; those homozygous for the C-allele at SNP rs12608932 will be eligible. Patients must have a diagnosis of ALS according to the revised El Escorial criteria, and a TRICALS risk-profile score between -6.0 and -2.0. An expected number of 1200 patients will be screened in order to enroll a target sample size of 171 patients. Patients will be randomly allocated in a 2:1 ratio to lithium carbonate or matching placebo, and treated for a maximum duration of 24 months. The primary endpoint is the time to death or respiratory insufficiency, whichever occurs first. Key secondary endpoints include functional decline, respiratory function, quality of life, tolerability, and safety. An interim analysis for futility and efficacy will be conducted after the occurrence of 41 events. DiscussionLithium carbonate has been proven to be safe and well-tolerated in patients with ALS. Given the favorable safety profile, the potential benefits are considered to outweigh the burden and risks associated with study participation. This study may provide conclusive evidence about the life-prolonging potential of lithium carbonate in a genetic ALS subgroup

    A nonsynonymous mutation in PLCG2 reduces the risk of Alzheimer’s disease, dementia with Lewy bodies and frontotemporal dementia, and increases the likelihood of longevity

    Get PDF
    The genetic variant rs72824905-G (minor allele) in the PLCG2 gene was previously associated with a reduced Alzheimer’s disease risk (AD). The role of PLCG2 in immune system signaling suggests it may also protect against other neurodegenerative diseases and possibly associates with longevity. We studied the effect of the rs72824905-G on seven neurodegenerative diseases and longevity, using 53,627 patients, 3,516 long-lived individuals and 149,290 study-matched controls. We replicated the association of rs72824905-G with reduced AD risk and we found an association with reduced risk of dementia with Lewy bodies (DLB) and frontotemporal dementia (FTD). We did not find evidence for an effect on Parkinson’s disease (PD), amyotrophic lateral sclerosis (ALS) and multiple sclerosis (MS) risks, despite adequate sample sizes. Conversely, the rs72824905-G allele was associated with increased likelihood of longevity. By-proxy analyses in the UK Biobank supported the associations with both dementia and longevity. Concluding, rs72824905-G has a protective effect against multiple neurodegenerative diseases indicating shared aspects of disease etiology. Our findings merit studying the PLCγ2 pathway as drug-target.Fil:  van der Lee, Sven J.. Vrije Universiteit Amsterdam; Países BajosFil: Conway, Olivia J.. Mayo Clinic Cancer Center; Estados UnidosFil: Jansen, Iris. Vrije Universiteit Amsterdam; Países BajosFil: Carrasquillo, Minerva M.. Mayo Clinic Cancer Center; Estados UnidosFil: Kleineidam, Luca. Universitat Bonn; Alemania. German Center for Neurodegenerative Diseases; Alemania. University Hospital Cologne; AlemaniaFil: van den Akker, Erik. Leiden University. Leiden University Medical Center; Países Bajos. Delft University of Technology; Países BajosFil: Hernández, Isabel. Universitat Internacional de Catalunya; España. Centro de Investigacion Biomedica en Red en Enfermedades Neurodegenerativas ; EspañaFil: van Eijk, Kristel R.. University of Utrecht; Países BajosFil: Stringa, Najada. Vrije Universiteit Amsterdam; Países BajosFil: Chen, Jason A.. University of California at Los Angeles; Estados UnidosFil: Zettergren, Anna. University of Gothenburg; SueciaFil: Andlauer, Till F. M.. Max Planck Institute of Psychiatry; Alemania. Universitat Technical Zu Munich; Alemania. German Competence Network Multiple Sclerosis; AlemaniaFil: Diez Fairen, Monica. University Hospital Mutua de Terrassa; España. Fundacio per la Recerca Biomedica I Social Mutua Terrassa; EspañaFil: Simon Sanchez, Javier. Deutsches Zentrum für Neurodegenerative Erkrankungen; Alemania. Eberhard Karls Universität Tübingen; AlemaniaFil: Lleó, Alberto. Universitat Autònoma de Barcelona; España. Centro de Investigacion Biomedica en Red en Enfermedades Neurodegenerativas ; EspañaFil: Zetterberg, Henrik. Sahlgrenska University Hospital; Suecia. University of Gothenburg; Suecia. University College London; Estados UnidosFil: Nygaard, Marianne. University of Southern Denmark; DinamarcaFil: Blauwendraat, Cornelis. National Institute of Neurological Disorders and Stroke; Estados UnidosFil: Savage, Jeanne E.. Vrije Universiteit Amsterdam; Países BajosFil: Mengel From, Jonas. University of Southern Denmark; DinamarcaFil: Moreno Grau, Sonia. Universitat Internacional de Catalunya; EspañaFil: Wagner, Michael. Universitat Bonn; Alemania. Deutsches Zentrum für Neurodegenerative Erkrankungen; AlemaniaFil: Fortea, Juan. Universitat Autònoma de Barcelona; España. Centro de Investigacion Biomedica en Red en Enfermedades Neurodegenerativas ; EspañaFil: Keogh, Michael J.. University of Newcastle; Reino Unido. University of Cambridge; Reino UnidoFil: Blennow, Kaj. Sahlgrenska University Hospital; Suecia. University of Gothenburg; SueciaFil: Skoog, Ingmar. University of Gothenburg; SueciaFil: Friese, Manuel A.. German Competence Network Multiple Sclerosis; Alemania. Universitätsklinikum Hamburg‐Eppendorf; AlemaniaFil: Pletnikova, Olga. University Johns Hopkins; Estados UnidosFil: Zulaica, Miren. Centro de Investigacion Biomedica en Red en Enfermedades Neurodegenerativas ; España. Instituto Biodonostia; EspañaFil: Dalmasso, Maria Carolina. University Hospital Cologne; Alemania. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquímicas de Buenos Aires. Fundación Instituto Leloir. Instituto de Investigaciones Bioquímicas de Buenos Aires; Argentin

    Telomere length analysis in amyotrophic lateral sclerosis using large-scale whole genome sequence data

    Full text link
    BackgroundAmyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by the loss of upper and lower motor neurons, leading to progressive weakness of voluntary muscles, with death following from neuromuscular respiratory failure, typically within 3 to 5 years. There is a strong genetic contribution to ALS risk. In 10% or more, a family history of ALS or frontotemporal dementia is obtained, and the Mendelian genes responsible for ALS in such families have now been identified in about 50% of cases. Only about 14% of apparently sporadic ALS is explained by known genetic variation, suggesting that other forms of genetic variation are important. Telomeres maintain DNA integrity during cellular replication, differ between sexes, and shorten naturally with age. Sex and age are risk factors for ALS and we therefore investigated telomere length in ALS. MethodsSamples were from Project MinE, an international ALS whole genome sequencing consortium that includes phenotype data. For validation we used donated brain samples from motor cortex from people with ALS and controls. Ancestry and relatedness were evaluated by principal components analysis and relationship matrices of DNA microarray data. Whole genome sequence data were from Illumina HiSeq platforms and aligned using the Isaac pipeline. TelSeq was used to quantify telomere length using whole genome sequence data. We tested the association of telomere length with ALS and ALS survival using Cox regression. ResultsThere were 6,580 whole genome sequences, reducing to 6,195 samples (4,315 from people with ALS and 1,880 controls) after quality control, and 159 brain samples (106 ALS, 53 controls). Accounting for age and sex, there was a 20% (95% CI 14%, 25%) increase of telomere length in people with ALS compared to controls (p = 1.1 x 10(-12)), validated in the brain samples (p = 0.03). Those with shorter telomeres had a 10% increase in median survival (p = 5.0x10(-7)). Although there was no difference in telomere length between sporadic ALS and familial ALS (p=0.64), telomere length in 334 people with ALS due to expanded C9orf72 repeats was shorter than in those without expanded C9orf72 repeats (p = 5.0x10(-4)). DiscussionAlthough telomeres shorten with age, longer telomeres are a risk factor for ALS and worsen prognosis. Longer telomeres are associated with ALS

    Common and rare variant association analyses in amyotrophic lateral sclerosis identify 15 risk loci with distinct genetic architectures and neuron-specific biology

    Get PDF
    Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease with a lifetime risk of one in 350 people and an unmet need for disease-modifying therapies. We conducted a cross-ancestry genome-wide association study (GWAS) including 29,612 patients with ALS and 122,656 controls, which identified 15 risk loci. When combined with 8,953 individuals with whole-genome sequencing (6,538 patients, 2,415 controls) and a large cortex-derived expression quantitative trait locus (eQTL) dataset (MetaBrain), analyses revealed locus-specific genetic architectures in which we prioritized genes either through rare variants, short tandem repeats or regulatory effects. ALS-associated risk loci were shared with multiple traits within the neurodegenerative spectrum but with distinct enrichment patterns across brain regions and cell types. Of the environmental and lifestyle risk factors obtained from the literature, Mendelian randomization analyses indicated a causal role for high cholesterol levels. The combination of all ALS-associated signals reveals a role for perturbations in vesicle-mediated transport and autophagy and provides evidence for cell-autonomous disease initiation in glutamatergic neurons. A cross-ancestry genome-wide association meta-analysis of amyotrophic lateral sclerosis (ALS) including 29,612 patients with ALS and 122,656 controls identifies 15 risk loci with distinct genetic architectures and neuron-specific biology

    Common and rare variant association analyses in amyotrophic lateral sclerosis identify 15 risk loci with distinct genetic architectures and neuron-specific biology

    Get PDF
    Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease with a lifetime risk of one in 350 people and an unmet need for disease-modifying therapies. We conducted a cross-ancestry genome-wide association study (GWAS) including 29,612 patients with ALS and 122,656 controls, which identified 15 risk loci. When combined with 8,953 individuals with whole-genome sequencing (6,538 patients, 2,415 controls) and a large cortex-derived expression quantitative trait locus (eQTL) dataset (MetaBrain), analyses revealed locus-specific genetic architectures in which we prioritized genes either through rare variants, short tandem repeats or regulatory effects. ALS-associated risk loci were shared with multiple traits within the neurodegenerative spectrum but with distinct enrichment patterns across brain regions and cell types. Of the environmental and lifestyle risk factors obtained from the literature, Mendelian randomization analyses indicated a causal role for high cholesterol levels. The combination of all ALS-associated signals reveals a role for perturbations in vesicle-mediated transport and autophagy and provides evidence for cell-autonomous disease initiation in glutamatergic neurons. A cross-ancestry genome-wide association meta-analysis of amyotrophic lateral sclerosis (ALS) including 29,612 patients with ALS and 122,656 controls identifies 15 risk loci with distinct genetic architectures and neuron-specific biology

    Common and rare variant association analyses in amyotrophic lateral sclerosis identify 15 risk loci with distinct genetic architectures and neuron-specific biology

    Get PDF
    A cross-ancestry genome-wide association meta-analysis of amyotrophic lateral sclerosis (ALS) including 29,612 patients with ALS and 122,656 controls identifies 15 risk loci with distinct genetic architectures and neuron-specific biology. Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease with a lifetime risk of one in 350 people and an unmet need for disease-modifying therapies. We conducted a cross-ancestry genome-wide association study (GWAS) including 29,612 patients with ALS and 122,656 controls, which identified 15 risk loci. When combined with 8,953 individuals with whole-genome sequencing (6,538 patients, 2,415 controls) and a large cortex-derived expression quantitative trait locus (eQTL) dataset (MetaBrain), analyses revealed locus-specific genetic architectures in which we prioritized genes either through rare variants, short tandem repeats or regulatory effects. ALS-associated risk loci were shared with multiple traits within the neurodegenerative spectrum but with distinct enrichment patterns across brain regions and cell types. Of the environmental and lifestyle risk factors obtained from the literature, Mendelian randomization analyses indicated a causal role for high cholesterol levels. The combination of all ALS-associated signals reveals a role for perturbations in vesicle-mediated transport and autophagy and provides evidence for cell-autonomous disease initiation in glutamatergic neurons
    corecore